研究生: |
丁立慈 Ting, Li-Tzu |
---|---|
論文名稱: |
利用溫感型水膠材料以關節內注射的方式輸送抗發炎藥物槲皮素達到治療骨關節炎的目的 The Use of Thermo-Sensitive Hydrogel Methoxy-Poly (ethylene glycol)-Poly (ʟ-alanine)-ʟ-Lysine for Intra-Articular Delivery of Quercetin to Treat Osteoarthritis |
指導教授: |
朱一民
Chu, I-Ming |
口試委員: |
姚少凌
Yao, Chao-Ling 劉繼賢 Liu, Chi-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 70 |
中文關鍵詞: | 胺基酸水膠 、藥物控制釋放系統 、關節內注射 、骨關節炎 、槲皮素 、溫度敏感 、正電荷 |
外文關鍵詞: | Peptide-based hydrogel, Drug delivery system, Intra-articular injection, Osteoarthritis, Quercetin, Thermo-sensitive, Positively charged |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
骨關節炎是一種慢性退化的關節疾病,其所伴隨的疼痛感是患者行動不便的主要原因,然而目前的藥物治療方法,例如口服抗發炎藥或注射糖皮質激素、中樞鎮痛劑等,皆需要頻繁的投遞藥物,才能暫緩關節炎症狀,但也伴隨著顯著的副作用如腸胃不適、心血管疾病或使病患產生成癮性。而槲皮素為一種天然的生物性類黃酮,具有良好的抗氧化性、抗發炎作用與極高的生物相容性,因而在近期被廣泛的研究用來作為治療骨關節炎的藥物。在本研究中,我們設計了一種高生物相容性的溫度敏感型正電荷胺基酸水膠材料Methoxy-Poly (ethylene glycol)-Poly (ʟ-alanine)-ʟ-Lysine (簡稱mPAL)來包覆槲皮素,期望透過關節腔注射液態mPAL水膠材料,透過其溫度敏感性而在原位成膠。隨著水膠穩定降解,達到緩釋槲皮素的治療作用,不僅延長藥物滯留時間,也能減少投藥的頻率。研究透過核磁共振氫譜來鑑定所合成的共聚高分子結構,並且利用動態光散射儀、穿透式電子顯微鏡、掃描式電子顯微鏡、全反射傅立葉轉換紅外線光譜儀、流變儀等設備來觀測此水膠的成膠機制與膠體性質,再透過調整水膠藥物載體配方來達到較好的藥物包覆效果,同時也進行水膠載體的藥物釋放與生物毒性測試。初步的研究結果證實我們所合成的mPAL水膠材料搭配槲皮素的藥物載體配方是具有相當大的潛力來作為注射型的緩釋藥物劑型。
Osteoarthritis is a chronic degenerative joint disease and one of the leading causes of disability. However, the recommended treatments, such as oral administrations of analgesics or intra-articular injections of corticosteroids can only provide temporary pain alleviation and are accompanied with undesirable side effects, such as gastrointestinal discomfort or cardiovascular diseases. Quercetin is a natural flavonoid with anti-inflammatory and anti-oxidative functions. Furthermore, owing to its minimal side effects, there are a growing number of studies performed on quercetin as treatments for osteoarthritis. In this study, a positively charged thermo-sensitive hydrogel, Methoxy-Poly (ethylene glycol)-Poly (ʟ-alanine)-ʟ-Lysine, abbreviated as mPAL, is synthesized sequentially by ring opening polymerization of a series of alanine-NCA and lysine-NCA initiated by amine-terminated mPEG. With the encapsulation of quercetin, we design a drug delivery system for intra-articular injection and expect this highly biocompatible and biodegradable peptide-based hydrogel could perform in situ gelation and stable drug release to enhance the efficiency of drug delivery. To examine the properties of mPAL copolymer, it was thoroughly analyzed by 1H NMR, FTIR, DLS, TEM, SEM, and rheometer. Additionally, examinations were also conducted on quercetin loaded mPAL hydrogel, which include the release profile of quercetin and the in vitro cytotoxicity test. Ultimately, the preliminary results indicate that mPAL copolymer could be a potential drug carrier for intra-articular injection in osteoarthritis treatment.
1. T. R. Hoare, D. S. Kohane, Hydrogels in drug delivery: Progress and challenges. Polymer, 2008. 49(8): p. 1993-2007.
2. E. Caló, V. V. Khutoryanskiy, Biomedical applications of hydrogels: A review of patents and commercial products. Eur Polym J., 2015. 65: p. 252-267.
3. J. L. Drury, D. J. Mooney, Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 2003. 24(24): p. 4337-4351.
4. O. Wichterle, D. LÍM, Hydrophilic gels for biological use. Nature, 1960. 185: p. 117-118.
5. D. A. Gyles, L. D. Castro, J. O. C. Silva, M. Roseane, A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J., 2017. 88: p. 373-392.
6. Y. L. Li, J. Rodrigues, H. Tomas, Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chem Soc Rev., 2012. 41(6): p. 2193-2221.
7. A. S. Hoffman, Hydrogels for biomedical applications. Adv Drug Deliv Rev., 2012. 64: p. 18-23.
8. Q.- W. Li, C.- L. Liu, J.- R. Wen, Y.- Z. Wu, Y. Shan, J.- F. Liao, The design, mechanism and biomedical application of self-healing hydrogels. Chinese Chem Lett., 2017. 28(9): p. 1857-1874.
9. J. Maitra, V. K. Shukla, Cross-linking in hydrogels - A review. Am J Polym Sci., 2014. 4(2): p. 25-31.
10. M. F. Akhtar, M. Hanif, N. M. Ranjha, Methods of synthesis of hydrogels: A review. Saudi Pharm J., 2016. 24(5): p. 554-559.
11. E. M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review. J Adv Res., 2015. 6(2): p. 105-121.
12. H. J. Chung, T. G. Park, Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today, 2009. 4(5): p. 429-437.
13. W. E. Hennink, C. F. van Nostrum, Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev., 2002. 54(1): p. 13-36.
14. D. Schmaljohann, Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev., 2006. 58(15): p. 1655-1670.
15. I. Willner, Stimuli-controlled hydrogels and their applications. Acc Chem Res., 2017. 50(4): p. 657-658.
16. R. Yoshida, T. Okano, Stimuli-responsive hydrogels and their application to functional materials, in Biomedical Applications of Hydrogels Handbook, R.M. Ottenbrite, K. Park, and T. Okano, Editors. 2010, Springer New York: New York, NY. p. 19-43.
17. D. J. Phillips, M. I. Gibson, Towards being genuinely smart: 'Isothermally-responsive' polymers as versatile, programmable scaffolds for biologically-adaptable materials. Polym Chem., 2015. 6(7): p. 1033-1043.
18. M. Boustta, P.-E. Colombo, S. Lenglet, S. Poujol, M. Vert, Versatile UCST-based thermoresponsive hydrogels for loco-regional sustained drug delivery. J Control Release., 2014. 174: p. 1-6.
19. C. T. Huynh, M. K. Nguyen, D. S. Lee, Injectable block copolymer hydrogels: Achievements and future challenges for biomedical applications. Macromolecules, 2011. 44(17): p. 6629-6636.
20. L. Yu, J. D. Ding, Injectable hydrogels as unique biomedical materials. Chem Soc Rev., 2008. 37(8): p. 1473-1481.
21. L. Yu, G. T. Chang, H. Zhang, J. D. Ding, Temperature‐induced spontaneous sol–gel transitions of poly(D,L‐lactic acid‐co‐glycolic acid)‐b‐poly(ethylene glycol)‐b‐poly(D,L‐lactic acid‐co‐glycolic acid) triblock copolymers and their end‐capped derivatives in water. J Polym Sci A Polym Chem., 2007. 45(6): p. 1122-1133.
22. B. Jeong, S. W. Kim, Y. H. Bae, Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev., 2012. 64: p. 154-162.
23. C. L. He, S. W. Kim, D. S. Lee, In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release., 2008. 127(3): p. 189-207.
24. S. J. Holder, N. A. J. M. Sommerdijk, New micellar morphologies from amphiphilic block copolymers: disks, toroids and bicontinuous micelles. Polym Chem., 2011. 2(5): p. 1018-1028.
25. N. A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm., 2000. 50(1): p. 27-46.
26. H. J. Moon, D. Y. Ko, M. H. Park, M. K. Joo, B. M. Jeong, Temperature-responsive compounds as in situ gelling biomedical materials. Chem Soc Rev., 2012. 41(14): p. 4860-4883.
27. P.-R. Chiang, T.-Y. Lin, H.-C. Tsai, H.-L. Chen, S.-Y. Liu, F. R. Chen, Y. S. Hwang, I.-M. Chu, Thermosensitive hydrogel from oligopeptide-containing amphiphilic block copolymer: Effect of peptide functional group on self-assembly and gelation behavior. Langmuir, 2013. 29(51): p. 15981-15991.
28. Y. L. Cheng, C. L. He, C. S. Xiao, X. S. Chen, Decisive role of hydrophobic side groups of polypeptides in thermosensitive gelation. Biomacromolecules, 2012. 13(7): p. 2053-2059.
29. J. Huang, C. L. Hastings, G. P. Duffy, D. J. Adams, A. Heise, Supramolecular hydrogels with reverse thermal gelation properties from (oligo)tyrosine containing block copolymers. Biomacromolecules, 2013. 14(1): p. 200-206.
30. J. Y. Lin, P. L. Lai, Y. K. Lin, S. Peng, L. Y. Lee, C. N. Chen, I.-M. Chu, A poloxamer-polypeptide thermosensitive hydrogel as a cell scaffold and sustained release depot. Polym Chem., 2016. 7(17): p. 2976-2985.
31. A. Maslovskis, J. B. Guilbaud, I. Grillo, N. Hodson, A. Saiani, Self-assembling peptide/thermoresponsive polymer composite hydrogels: Effect of peptide–polymer interactions on hydrogel properties. Langmuir, 2014. 30(34): p. 10471-10480.
32. Particle Sciences, Protein Structure. Particle Sciences - Technical Brief, 2009. 8.
33. Y. Y. Choi, M. K. Joo, Y. S. Sohn, B. M. Jeong, Significance of secondary structure in nanostructure formation and thermosensitivity of polypeptide block copolymers. Soft Matter., 2008. 4(12): p. 2383-2387.
34. S. H. Park, B. G. Choi, H. J. Moon, S.-H. Cho, B. M. Jeong, Block sequence affects thermosensitivity and nano-assembly: PEG-l-PA-dl-PA and PEG-dl-PA-l-PA block copolymers. Soft Matter., 2011. 7(14): p. 6515-6521.
35. J. P. Baker, H. W. Blanch, J. M. Prausnitz, Swelling properties of acrylamide-based ampholytic hydrogels: comparison of experiment with theory. Polymer, 1995. 36(5): p. 1061-1069.
36. S. Nakamura, T. Kobayashi, M. Nakamura, S. Itoh, K. Yamashita, Electrostatic surface charge acceleration of bone ingrowth of porous hydroxyapatite/β‐tricalcium phosphate ceramics. J Biomed Mater Res. A 2010. 92(1): p. 267-275.
37. R. A. Hartvig, M. van de Weert, J. Østergaard, L. Jorgensen, H. Jensen, Protein adsorption at charged surfaces: The role of electrostatic interactions and interfacial charge regulation. Langmuir, 2011. 27(6): p. 2634-2643.
38. G. B. Schneider, A. English, M. Abraham, R. Zaharias, C. Stanford, J. Keller, The effect of hydrogel charge density on cell attachment. Biomaterials, 2004. 25(15): p. 3023-3028.
39. D. Kumar, J. P. Gittings, I. G. Turner, C. R. Bowen, A. Bastida-Hidalgo, S. H. Cartmell, Polarization of hydroxyapatite: Influence on osteoblast cell proliferation. Acta Biomater., 2010. 6(4): p. 1549-1554.
40. F. Tan, X. D. Xu, T. Deng, M. Yin, X. Z. Zhang, J. W. Wang, Fabrication of positively charged poly(ethylene glycol)-diacrylate hydrogel as a bone tissue engineering scaffold. Biomed Mater., 2012. 7(5): p. 055009.
41. Y. Ikada, H. Tsuji, Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun., 2000. 21(3): p. 117-132.
42. J. W. Leenslag, A. J. Pennings, R. R. M. Bos, F. R. Rozema, G. Boering, Resorbable materials of poly(l-lactide). VI. Plates and screws for internal fracture fixation. Biomaterials, 1987. 8(1): p. 70-73.
43. J. A. Hubbell, Hydrogel systems for barriers and local drug delivery in the control of wound healing. J Control Release., 1996. 39(2): p. 305-313.
44. G. P. Chen, T. Ushida, T. Tateishi, Hybrid biomaterials for tissue engineering: A preparative method for PLA or PLGA–Collagen hybrid sponges. Adv Mater., 2000. 12(6): p. 455-457.
45. A. Barat, H. J. Ruskin, M. Crane, 3D multi-agent models for protein release from PLGA spherical particles with complex inner morphologies. Theory in Biosciences, 2008. 127(2): p. 95-105.
46. M. A. Tracy, K. L. Ward, L. Firouzabadian, Y. Wang, N. Dong, Y. Zhang, Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro. Biomaterials, 1999. 20(11): p. 1057-1062.
47. G. Winzenburg, C. Schmidt, S. Fuchs, T. Kissel, Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Adv Drug Deliv Rev., 2004. 56(10): p. 1453-1466.
48. S. Kube Rahul, V. S. Kadam, G. R. Shendarkar, S. B. Jadhav, V. B. Bharkad, Sustained release drug delivery system: A review. IJRPB, 2015. 3(3): p. 246-251.
49. S. J. Shah, P. B. Shah, M. S. Patel, M. R. Patel, A review on extended release drug delivery system and multiparticulate system. World J Pharm Res., 2015. 4(8): p. 724-747.
50. N. Mehrotra, M. Gupta, A. Kovar, B. Meibohm, The role of pharmacokinetics and pharmacodynamics in phosphodiesterase-5 inhibitor therapy. Int J Impot Res., 2007. 19: p. 253.
51. K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, K. M. Shakesheff, Polymeric Systems for Controlled Drug Release. Chem Rev., 1999. 99(11): p. 3181-3198.
52. J. L. E. Ivirico, M. Bhattacharjee, E. Kuyinu, L. S.Nair, C. T. Laurencin, Regenerative engineering for knee osteoarthritis treatment: Biomaterials and cell-based technologies. Engineering, 2017. 3(1): p. 16-27.
53. J. Martel-Pelletier, A. J. Barr, F. M. Cicuttini, P. G. Conaghan, C. Cooper, A. J. Teichtahl, J.-P. Pelletier, Osteoarthritis. Nat Rev Dis Primers., 2016. 2: p. 16072.
54. T. E. Kavanaugh, T. A. Werfel, H. Cho, K. A. Hasty, C. L. Duvall, Particle-based technologies for osteoarthritis detection and therapy. Drug Deliv Transl Res., 2016. 6(2): p. 132-147.
55. L. Christensen, L. Camitz, K. E. Illigen, M. Hansen, P. G. Conaghan, Synovial incorporation of polyacrylamide hydrogel after injection into normal and osteoarthritic animal joints. Osteoarthritis Cartilage., 2016. 24(11): p. 1999-2002.
56. Z. W. Zhang, X. C. Wei, J. Gao, Y. Zhao, Y. M. Zhao,L. Guo, L. Wei, Intra-articular injection of cross-linked hyaluronic acid-dexamethasone hydrogel attenuates osteoarthritis: An experimental study in a rat model of osteoarthritis. Int J Mol Sci., 2016. 17(4): p. 411.
57. E. Kon, G. Filardo, M. Drobnic, H. Madry, C. N. Dijk, S. Della Villa, Non-surgical management of early knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc., 2012. 20(3): p. 436-449.
58. T. E. McAlindon, R. R. Bannuru, M. C. Sullivan, N. K. Arden, E. M. Roos, M. Underwood, OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartilage., 2014. 22(3): p. 363-388.
59. F. Buttgereit, G.-R. Burmester, J. W. J. Bijlsma, Non-surgical management of knee osteoarthritis: where are we now and where do we need to go? RMD Open, 2015. 1(1).
60. S. Stanos, Osteoarthritis guidelines: A progressive role for topical NSAIDs J Am Osteopath Assoc., 2013. 113(2): p. 123-127.
61. D. Bao, J. K. Wang, X. B. Pang, H. L. Liu, Protective effect of Quercetin against oxidative stress-induced cytotoxicity in rat pheochromocytoma (PC-12) cells. Molecules, 2017. 22(7): p. 1122.
62. A. F. Ben, N. Zribi , L. Ammar-Keskes, Antioxidative potential of Quercetin against hydrogen peroxide induced oxidative stress in spermatozoa in vitro. Andrologia, 2011. 43(4): p. 261-265.
63. E. Olayinka, A. Ore, O. Adeyemo, O. Ola, O. Olotu, R. Echebiri, Quercetin, a flavonoid antioxidant, ameliorated procarbazine-induced oxidative damage to murine tissues. Antioxidants, 2015. 4(2): p. 304.
64. M. Bakhshaeshi, A. Khaki, F. Fathiazad, A. A. Khaki, E. Ghadamkheir, Anti-oxidative role of quercetin derived from Allium cepa on aldehyde oxidase (OX-LDL) and hepatocytes apoptosis in streptozotocin-induced diabetic rat. Asian Pac J Trop Biomed., 2012. 2(7): p. 528-531.
65. M. Mamani-Matsuda, T. Kauss, A. Al-Kharrat, J. Rambert, F. Fawaz, D. Thiolat, D. Moynet, D. Malvy, Therapeutic and preventive properties of quercetin in experimental arthritis correlate with decreased macrophage inflammatory mediators. Biochem Pharmacol., 2006. 72(10): p. 1304-1310.
66. R. Kumar, V. Nair, S. Singh, Y. K. Gupta, In vivo antiarthritic activity of Rosa centifolia L. flower extract. AYU, 2015. 36(3): p. 341-345.
67. X. Cai, Z. Fang, J. Dou, A. Yu, G. Zhai, Bioavailability of Quercetin: Problems and promises. Curr Med Chem., 2013. 20(20): p. 2572-2582.
68. V. Natarajan, N. Krithica, B. Madhan, P. K. Sehgal, Formulation and Evaluation of Quercetin Polycaprolactone Microspheres for the Treatment of Rheumatoid Arthritis. J Pharm Sci., 2011. 100(1): p. 195-205.
69. E. U. Graefe, J. Wittig, S. Mueller, A. K. Riethling, H. Derendorf , M. Veit, Pharmacokinetics and bioavailability of Quercetin Glycosides in humans. J Clin Pharmacol. , 2011. 41(5): p. 492-499.
70. C. Larsen, J. Østergaard, S. W. Larsen, H. Jensen, S. Jacobsen, C. Lindegaard, P. H. Andersen, Intra-articular depot formulation principles: Role in the management of postoperative pain and arthritic disorders. J Pharm Sci., 2008. 97(11): p. 4622-4654.
71. M. L. González-Rodríguez, A. M. Fernández-Romero, A. M. Rabasco, Towards the antioxidant therapy in osteoarthritis: Contribution of nanotechnology. J Drug Deliv Sci Technol., 2017. 42: p. 94-106.
72. S. Asada, K. Fukuda, M. Oh, C. Hamanishi, S. Tanaka, Effect of hydrogen peroxide on the metabolism of articular chondrocytes. J Inflamm Res., 1999. 48(7): p. 399-403.
73. Y. J. Chen, D. C. Chan, K. C. Lan, C. C. Wang, C. M. Chen, R.S. Yang, S. H. Liu, PPARγ is involved in the hyperglycemia‐induced inflammatory responses and collagen degradation in human chondrocytes and diabetic mouse cartilages. J Orthop Res., 2015. 33(3): p. 373-381.
74. J. Schalkwijk, W. B. van den Berg, L. B. van de Putte, L. A. Joosten, An experimental model for hydrogen peroxide-induced tissue damage. Effects of a single inflammatory mediator on (peri)articular tissues. Arthritis Rheum., 1986. 29(4): p. 532-538.
75. I. M. Khan, S. J. Gilbert, B. Caterson, L. J. Sandell, C. W. Archer, Oxidative stress induces expression of osteoarthritis markers procollagen IIA and 3B3(−) in adult bovine articular cartilage. Osteoarthritis Cartilage., 2008. 16(6): p. 698-707.
76. A. K. Grover, S. E. Samson, Benefits of antioxidant supplements for knee osteoarthritis: rationale and reality. Open Nutr J., 2016. 15(1): p. 1.
77. J. Y. Na, K. Song, S. Kim, J. Kwon, Rutin protects rat articular chondrocytes against oxidative stress induced by hydrogen peroxide through SIRT1 activation. Biochem Biophys Res Commun., 2016. 473(4): p. 1301-1308.
78. Y. J. Chen, K. S. Tsai, C. Y. Chiu, T. H. Yang, R. S. Yang, S. H. Liu, EGb761 inhibits inflammatory responses in human chondrocytes and shows chondroprotection in osteoarthritic rat knee. J Orthop Res., 2013. 31(7): p. 1032-1038.
79. C. Gardi, K. Bauerova, B. Stringa, V. Kuncirova, L. Slovak, S. Bilotto, G. L. Russo, Quercetin reduced inflammation and increased antioxidant defense in rat adjuvant arthritis. Arch Biochem Biophys., 2015. 583: p. 150-157.
80. F. Javadi, A. Ahmadzadeh, S. Eghtesadi, N. Aryaeian, M. Zabihiyeganeh, A. Rahimi Foroushani, S. Jazayeri The effect of Quercetin on inflammatory factors and clinical symptoms in women with rheumatoid arthritis: A double-blind, randomized controlled trial. J Am Coll Nutr., 2017. 36(1): p. 9-15.
81. H. Matsuno, H. Nakamura, K. Katayama, K. Yudoh, Y. Kiso, Effects of an oral administration of Glucosamine-Chondroitin-Quercetin Glucoside on the synovial fluid properties in patients with osteoarthritis and rheumatoid arthritis. Biosci Biotechnol Biochem., 2009. 73(2): p. 288-292.
82. N. Kanzaki, Y. Ono, H. Shibata,T. Moritani, Glucosamine-containing supplement improves locomotor functions in subjects with knee pain: A randomized, double-blind, placebo-controlled study. Clin Interv Aging., 2015. 10: p. 1743-1753.
83. N. Kanzaki, K. Saito, A. Maeda, Y. Kitagawa, Y. Kiso, K. Watanabe, A. Tomonaga, I. Nagaoka, H. Yamaguchi, Effect of a dietary supplement containing glucosamine hydrochloride, chondroitin sulfate and quercetin glycosides on symptomatic knee osteoarthritis: a randomized, double-blind, placebo-controlled study. J Sci Food Agric., 2012. 92(4): p. 862-869.
84. V. Natarajan, B. Madhan, M. L. Tiku, Intra-articular injections of polyphenols protect articular cartilage from inflammation-induced degradation: Suggesting a potential role in cartilage therapeutics PLoS One., 2015. 10(6): p. e0127165.
85. A. Zhou, O. A. Sadik, Comparative analysis of Quercetin oxidation by electrochemical, enzymatic, autoxidation, and free radical generation techniques: A mechanistic study. J Agric Food Chem., 2008. 56(24): p. 12081-12091.
86. J. Teixeira, A. Gaspar, E. M. Garrido, J. Garrido, F. Borges, Hydroxycinnamic Acid Antioxidants: An Electrochemical Overview. Biomed Res Int., 2013. 2013: p. 11.
87. T.L. Riss, R. A. Moravec, A. L. Niles, D. Sarah, M. Lisa, Cell Viability Assays. Assay Guidance Manual, 2013: p. 31.
88. D. Fairhurst, R. W. Lee, The zeta potential & its use in pharmaceutical applications - part 2: Measurement techniques & uses. Drug Development & Delivery, 2011. 11(7): p. 50-55.
89. J. J. Escobar-Cháve, M. López-Cervantes, A. Naïk, Y. N. Kalia, D. Quintanar-Guerrero, A. Ganem-Quintanar, Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci., 2006. 9(3): p. 339-358.
90. C. Yan, D. J. Pochan, Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem Soc Rev., 2010. 39(9): p. 3528-3540.
91. C. Guo, R. J. Yang, K. Jang, X. Zhou, Y. Liu, Protective effects of pretreatment with Quercetin against lipopolysaccharide-induced apoptosis and the inhibition of osteoblast differentiation via the MAPK and Wnt/β-catenin pathways in MC3T3-E1 cells. Cell Physiol Biochem., 2017. 43(4): p. 1547-1561.