研究生: |
許方瑜 Hsu, Fang-Yu |
---|---|
論文名稱: |
創傷弧菌外毒素RtxA 高量甘氨酸-天門冬氨酸區域人源單鏈抗體之篩選以及此區域的細胞表面結合特性之研究 Isolation of a human single-chain antibody targeting to the Gly-Asp rich region of Vibrio vulnificus RtxA toxin and characterization of the cell surface adherence property of the region |
指導教授: |
張晃猷
Chang, Hwan-You |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 49 |
中文關鍵詞: | 創傷弧菌 、外毒素 、人源單鍊抗體 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
創傷弧菌會分泌數種致病因子,造成細胞病變。其中一種主要致病因子為RtxA 外毒素,被歸類為MARTX 蛋白質家族成員。在此蛋白質家族中,成員皆具有多樣功能及自我處理的特性。
典型MARTX 蛋白質的C 端含有多次重複的甘氨酸-天門冬氨酸豐富區域。此外,根據推測MARTX毒素的C 端區域會輔助此類毒素進入真核細胞,並且和細胞膜的表面因子產生交互作用。然而,在創傷弧菌RtxA 中,含有甘氨酸-天門冬氨酸豐富區域的C 端是否具有和宿主細胞表面結合的特性,仍須研究證實。
本研究分為兩個部份。第一部分為選殖創傷弧菌RtxA C 端的甘氨酸-天門冬氨酸重複區域,將所得到的純化蛋白作為抗原,用以篩選噬菌體表面展現的人源單鍊抗體庫。第二部份的實驗則著重於驗證RtxA 的C 端區域具有黏附細胞的特性,並且利用結構預測伺服器來預測
此區域的可能分子構造。
第一部分篩選的結果,得到一株可和此重組的甘氨酸-天門冬氨酸豐富區域反應的抗體。後續西方點墨法分析的結果顯示,此抗體不但可專一性辨認甘氨酸-天門冬氨酸豐富區域,並可偵測到創傷弧菌溶解物中RtxA 片段的存在。在第二部份的實驗裡,證實此蛋白具有黏附人類喉癌表皮細胞表面的特性。從結構預測的結果亦可得知,此豐富區域的分子構造類似於它種RTX 蛋白質C 端區域,因此亦可能具有和鈣離子結合的活性,並且負責毒素和宿主細胞之間的交互作用。
Vibrio vulnificus secretes several virulence factors causing cytopathic effects on the host cells. RtxA is a major virulence factor of this bacterium that was categorized into MARTX protein family, in which members of this family are multifunctional and autoprocessing. The MARTX proteins typically contain Gly-Asp rich regions repetitive several times in the C-terminal region. The
C-terminal domain had been proposed to be involved in the translocation of the MARTX toxin into eukaryotic cells, and may act as a host cell surface adhesion factor. Nevertheless, whether the Gly-Asp-rich C-terminal region of V. vulnificus RtxA indeed binds to the host cells remains to be determined.
This study is divided into two parts. In the first part, we specifically cloned, overexpressed and purified the Gly-Asp rich portion of C-terminal region of V. vulnificus RtxA (GD-repeat). The recombinant protein was then utilized as the target for screening human single-chain variable fragment (scFv) phage display library. The second part of this study aims at characterization of the cell surface adhesion property of recombinant GD-repeat, and a structure modeling web server (SwissModel) was employed to predict the molecular structure of this cloned region.
One antibody (scFv-GD23C) showed binding activity to recombinant GD-repeat. In subsequent Western blot analysis, the antibody not only specifically recognized the GD-repeat, but also detected Vibrio vulnificus RtxA fragment in bacterial lysate. In the second part, the surface
adhesions on HEp-2 cells of the cloned GD-repeat was demonstrated by immunofluorescence, and the result of modeling had described a special □-barrel structure of this region. The structure is
similar to the C-terminal regions of other RTX proteins, suggesting this region may possess
calcium-binding activity and being responsible for toxin-host cell interaction.
1. Ester Marco-Noales, E.G.B., and Carmen Amaro, Effects of Salinity and Temperature on
Long-Term Survival of the Eel Pathogen Vibrio vulnificus Biotype 2 (Serovar E). APPLIED
AND ENVIRONMENTAL MICROBIOLOGY, 1999. 65(3): p. 1117-1126.
2. Paranjpye, M.S.S.a.R.N., Epidemiology and pathogenesis of Vibrio vulnificus. MICROBES
AND INFECTION, 2000, . 2: p. 177-188.
3. M. Tamplin, G.E.R., N. J. Blake, and T. Cuba, Isolation and Characterization of Vibrio
vulnificus from Two Florida Estuaries. APPLIED AND ENVIRONMENTAL
MICROBIOLOGY, 1982. 44(6): p. 1466-1470.
4. Chen, C.Y., et al., Comparative genome analysis of Vibrio vulnificus, a marine pathogen.
GENOME RESEARCH, 2003. 13(12): p. 2577-87.
5. Anita C. Wright, J.G.M., JR., David R. Maneval, JR., Kathleen Richardson, and James B.
Kaper, Cloning of the Cytotoxin-Hemolysin Gene of Vibrio vulnificus. INFECTION AND
IMMUNITY, 1985. 50(3): p. 922-924.
6. Debra A. Linkous, J.D.O., Pathogenesis of Vibrio vulnificus. FEMS MICROBIOLOGY
LETTERS, 1999. 174: p. 207-214.
7. Anita C. Wright, J.L.P., Mike K. Tanner, Lynne A. Ensor, Arthur B. Karpas, J. Glenn Morris,
JR., and Marcelo B. Sztein, Differential Expression of Vibrio vulnificus Capsular
Polysaccharide. INFECTION AND IMMUNITY, 1999. 67(5): p. 2250–2257.
8. Alina Nakhamchik, C.W., and Dean A. Rowe-Magnus, Identification of a Wzy Polymerase
Required for Group IV Capsular Polysaccharide and Lipopolysaccharide Biosynthesis in
Vibrio vulnificus. INFECTION AND IMMUNITY, 2007. 75(12): p. 5550-5558.
9. Paranjpye, R.N. and M.S. Strom, A Vibrio vulnificus type IV pilin contributes to biofilm
formation, adherence to epithelial cells, and virulence. INFECTION AND IMMUNITY,
2005. 73(3): p. 1411-22.
26
10. Raetz, C.R. and C. Whitfield, Lipopolysaccharide endotoxins. ANNUAL REVIEW OF
BIOCHEMISTRY, 2002. 71: p. 635-700.
11. Lee, B.C., S.H. Choi, and T.S. Kim, Vibrio vulnificus RTX toxin plays an important role in
the apoptotic death of human intestinal epithelial cells exposed to Vibrio vulnificus.
MICROBES AND INFECTION, 2008. 10(14-15): p. 1504-13.
12. Munford, R.S., Sensing gram-negative bacterial lipopolysaccharides: a human disease
determinant? INFECTION AND IMMUNITY, 2008. 76(2): p. 454-65.
13. Lee, B.C., et al., Vibrio vulnificus rtxE is important for virulence, and its expression is
induced by exposure to host cells. INFECTION AND IMMUNITY, 2008. 76(4): p. 1509-17.
14. Rohinee N. Paranjpye, J.C.L., Jeffrey C. Pepe, Cynthia M. Pepe, and Mark S. Strom, The
Type IV Leader Peptidase/N-Methyltransferase of Vibrio vulnificus Controls Factors
Required for Adherence to HEp-2 Cells and Virulence in Iron-Overloaded Mice.
INFECTION AND IMMUNITY, 1998. 66(12): p. 5659-5668.
15. Edward T. Lally, R.B.H., Irene R. Kieba and Jon Korostoff, The interaction between RTX
toxins and target cells. TRENDS IN MICROBIOLOGY, 1999. 7(9): p. 356-361.
16. Jun Li, K.D.C., and Jerry W. Ritchey, Neisseria meningitidis RTX Protein FrpC Induces
High Levels of Serum Antibodies during Invasive Disease: Polymorphism of frpC Alleles
and Purification of Recombinant FrpC. INFECTION AND IMMUNITY, 2001. 69(9): p.
5509–5519.
17. Dickerson, L.A.v.L.a.H.W., Influence of calcium on secretion and activity of the cytolysins
of Actinobacillus pleuropneumoniae. INFECTION AND IMMUNITY, 1992. 60(2): p.
353-359.
18. Frey, J., Virulence in Actinobacillus pleuropneumoniae and RTX toxins. TRENDS IN
MICROBIOLOGY, 1995. 3(7): p. 257-261.
19. Thanuja C. Ambagala, A.P.N.A., Subramaniam Srikumaran, The leukotoxin of Pasteurella
haemolytica binds to □2 integrins on bovine leukocytes. FEMS MICROBIOLOGY
27
LETTERS, 1999. 179: p. 161-167.
20. Satchell, K.J., MARTX, multifunctional autoprocessing repeats-in-toxin toxins. INFECTION
AND IMMUNITY, 2007. 75(11): p. 5079-84.
21. Welch, M.E.B.a.R.A., Characterization of an RTX Toxin from Enterohemorrhagic
Escherichia coli O157:H7. INFECTION AND IMMUNITY, 1996. 64(1): p. 167–175.
22. Reto Meier, T.D., Vera Svensson, Karl-Erich Jaeger, and Ulrich Baumann, A Calcium-gated
Lid and a Large □-Roll Sandwich Are Revealed by the Crystal Structure of Extracellular
Lipase from Serratia marcescens. JOURNAL OF BIOLOGICAL CHEMISTRY, 2007.
282(43): p. 31477–31483.
23. Bauche, C., et al., Structural and functional characterization of an essential RTX subdomain
of Bordetella pertussis adenylate cyclase toxin. J Biol Chem, 2006. 281(25): p. 16914-26.
24. Baumann, U., et al., Crystal structure of a complex between Serratia marcescens
metalloprotease and an inhibitor from Erwinia chrysanthemi. JOURNAL OF
MOLECULAR BIOLOGY, 1995. 248(3): p. 653-61.
25. Guermonprez, P., et al., The adenylate cyclase toxin of Bordetella pertussis binds to target
cells via the □M□2 integrin (CD11b/CD18). THE JOURNAL OF EXPERIMENTAL
MEDICINE, 2001. 193(9): p. 1035-44.
26. Jun Li, K.D.C., and Jerry W. Ritchey, Bovine CD18 identified as a species specific receptor
for Pasteurella haemolytica leukotoxin. VETERINARY MICROBIOLOGY, 1999. 67: p.
91-97.
27. Lally, E.T., et al., RTX toxins recognize a beta2 integrin on the surface of human target cells.
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997. 272(48): p. 30463-9.
28. Mohammed El-Azami-El-Idrissi , C.B., Jirina Loucka, Radim Osicka, Peter Sebo, Daniel
Ladant and Claude Leclerc, Interaction of Bordetella pertussis Adenylate Cyclase with
CD11b/CD18
ROLE OF TOXIN ACYLATION AND IDENTIFICATION OF THE MAIN INTEGRIN
28
INTERACTION DOMAIN. JOURNAL OF BIOLOGICAL CHEMISTRY, 2003. 278(40): p.
38514-38521.
29. El-Azami-El-Idrissi, M., et al., Interaction of Bordetella pertussis adenylate cyclase with
CD11b/CD18: Role of toxin acylation and identification of the main integrin interaction
domain. JOURNAL OF BIOLOGICAL CHEMISTRY, 2003. 278(40): p. 38514-21.
30. Jana Morova, R.O., Jiri Masin, and Peter Sebo, RTX cytotoxins recognize □2 integrin
receptors through N-linked oligosaccharides. PNAS, 2008. 105(14): p. 5355–5360.
31. Aitziber L. Cortajarena, F.l.M.G.i., and Helena Ostolaz, Glycophorin as a Receptor for
Escherichia coli a-Hemolysin in Erythrocytes. THE JOURNAL OF BIOLOGICAL
CHEMISTRY 2001. 276(16): p. 12513–12519.
32. Albrecht Ludwig, T.J., Roland Benz and Werner Goebel, The repeat domain of Escherichia
coli haemolysin (HlyA) is responsible for its Ca2+-dependent binding to erythrocytes.
MOLECULAR AND GENERAL GENETICS, 1988. 214(3): p. 553-561.
33. Baumann, U., et al., Three-dimensional structure of the alkaline protease of Pseudomonas
aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. THE
EMBO JOURNAL, 1993. 12(9): p. 3357-64.
34. David F. Boehm, R.A.W., and Irvin S. Snyder, Calcium Is Required for Binding of
Escherichia coli Hemolysin (HlyA) to Erythrocyte Membranes. INFECTION AND
IMMUNITY, 1990. 58(6): p. 1951-1958.
35. Thierry Rose, P.S., Jacques Bellalou, and Daniel Ladant, Interaction of Calcium with
Bordetella pertussis Adenylate Cyclase Toxin. JOURNAL OF BIOLOGICAL CHEMISTRY,
1995. 270(44): p. 26370–26376.
36. Fiser, R. and I. Konopasek, Different modes of membrane permeabilization by two RTX
toxins: HlyA from Escherichia coli and CyaA from Bordetella pertussis. BIOCHEM
BIOPHYS ACTA, 2009. 1788(6): p. 1249-54.
37. Benz, R., et al., Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Evidence for the
29
formation of small ion-permeable channels and comparison with HlyA of Escherichia coli.
JOURNAL OF BIOLOGICAL CHEMISTRY, 1994. 269(44): p. 27231-9.
38. Cordero, C.L., et al., The Actin cross-linking domain of the Vibrio cholerae RTX toxin
directly catalyzes the covalent cross-linking of actin. JOURNAL OF BIOLOGICAL
CHEMISTRY, 2006. 281(43): p. 32366-74.
39. Cordero, C.L., S. Sozhamannan, and K.J. Satchell, RTX toxin actin cross-linking activity in
clinical and environmental isolates of Vibrio cholerae. JOURNAL OF CLINICAL
MICROBIOLOGY, 2007. 45(7): p. 2289-92.
40. Fullner, K.J. and J.J. Mekalanos, In vivo covalent cross-linking of cellular actin by the Vibrio
cholerae RTX toxin. THE EMBO JOURNAL, 2000. 19(20): p. 5315-23.
41. Kudryashov, D.S.C., C. L.Reisler, E.Satchell, and K. J., Characterization of the enzymatic
activity of the actin cross-linking domain from the Vibrio cholerae MARTX Vc toxin.
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008. 283(1): p. 445-52.
42. Sheahan, K.L., C.L. Cordero, and K.J. Satchell, Identification of a domain within the
multifunctional Vibrio cholerae RTX toxin that covalently cross-links actin. PNAS, 2004.
101(26): p. 9798-803.
43. Sheahan, K.L. and K.J. Satchell, Inactivation of small Rho GTPases by the multifunctional
RTX toxin from Vibrio cholerae. CELLULAR MICROBIOLOGY, 2007. 9(5): p. 1324-35.
44. Pei, J. and N.V. Grishin, The Rho GTPase inactivation domain in Vibrio cholerae MARTX
toxin has a circularly permuted papain-like thiol protease fold. PROTEINS, 2009.
45. Lupardus, P.J., et al., Small molecule-induced allosteric activation of the Vibrio cholerae
RTX cysteine protease domain. SCIENCE, 2008. 322(5899): p. 265-8.
46. Prochazkova, K. and K.J. Satchell, Structure-function analysis of inositol
hexakisphosphate-induced autoprocessing of the Vibrio cholerae multifunctional
autoprocessing RTX toxin. JOURNAL OF BIOLOGICAL CHEMISTRY, 2008. 283(35): p.
23656-64.
30
47. Sheahan, K.L., C.L. Cordero, and K.J. Satchell, Autoprocessing of the Vibrio cholerae RTX
toxin by the cysteine protease domain. THE EMBO JOURNAL, 2007. 26(10): p. 2552-61.
48. Boardman, B.K., B.M. Meehan, and K.J. Fullner Satchell, Growth phase regulation of
Vibrio cholerae RTX toxin export. JOURNAL OF BACTERIOLOGY, 2007. 189(5): p.
1827-35.
49. Lin, W., et al., Identification of a vibrio cholerae RTX toxin gene cluster that is tightly linked
to the cholera toxin prophage. PNAS, 1999. 96(3): p. 1071-6.
50. Boardman, B.K. and K.J. Satchell, Vibrio cholerae strains with mutations in an atypical type
I secretion system accumulate RTX toxin intracellularly. JOURNAL OF BACTERIOLOGY,
2004. 186(23): p. 8137-43.