研究生: |
王皓陞 Wang, Hao-Sheng |
---|---|
論文名稱: |
雙星系統內恆星旋轉對核心塌縮超新星爆炸前恆星及多信使訊號之影響 Impact of stellar rotation in binary system on core-collapse supernova progenitors and multimessenger signals |
指導教授: |
潘國全
Pan, Kuo-Chuan |
口試委員: |
張祥光
Chang, Hsiang-Kuang 吳孟儒 Wu, Meng-Ru |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 天文研究所 Institute of Astronomy |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 34 |
中文關鍵詞: | 核心塌縮超新星 、黑洞 、中子星 、重力波 、流體模擬 |
外文關鍵詞: | Core-collapse supernovae, Black holes, Neutron stars, Gravitational wave astronomy, Hydrodynamical simulations |
相關次數: | 點閱:57 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
核心塌縮超新星之爆炸前恆星(CCSN progenitor)的詳細結構,對於研究超新
星爆炸機制以及其發出的多信使訊號,有著極為重要之影響。這篇研究主要探
討恆星旋轉速度對雙星系統的影響,我們選擇30太陽質量的主星以及20太陽質
量的伴星,並使用恆星演化程式MESA進行模擬。我們發現透過雙星間的質量轉
移,在特定初始雙星週期下可產生高速旋轉的超新星爆炸前恆星,但初始週期
與最終旋轉並無線性相關。
我們得出的結果是在相同質量比例的雙心系統下,超新星最終質量、鐵核質
量、緻密性參數(compactness parameter)以及最終旋轉速度根據初始週期可產生
很大的不同。舉例來說,藍超巨星形成的爆炸前恆星與單星系統的爆炸前恆星
相比有著較薄的矽殼以及分布較廣的氧殼。
此外,我們對透過雙星系統產生的高速旋轉爆炸前恆星使用二維自洽核心塌
縮超新星爆炸並包含微中子傳遞進行模擬。我們發現這些雙星系統形成的爆炸
前恆星所產生的微中子和重力波訊號也有著很大的差異,較大的緻密性參數會
形成較強的重力波訊號。再者,緊密的內核會導致更強的質量吸積並釋放更強
的微中子訊號。
The detailed structure of core-collapse supernova progenitors is
crucial for studying supernova explosion engines and the corresponding multimessenger signals. In this thesis, we investigate the influence of stellar rotation on binary systems consisting of a 30 solar mass donor star and a 20 solar mass accretor using the MESA stellar evolution code. We find that through mass transfer in binary systems, fast-rotating red-supergiant and blue-supergiant progenitors can be formed within a certain range of initial orbital periods, albeit the correlation is not linear.
We find that even with the same initial mass ratio of the binary system, the resulting final mass of the collapsars, the iron core mass, the compactness parameters, and the final rotational rates can vary widely, depending on the initial orbital periods. For instance, the blue-supergiant progenitors have a thinner Si-shell and a wider O-shell compared to those in single-star systems.
In addition, we conduct two-dimensional self-consistent core-collapse supernova simulations with neutrino transport for these rotating progenitors from binary stellar evolution. We find that the neutrino and gravitational-wave signatures of these binary progenitors could exhibit significant variations. Progenitors with larger compactness parameters produce more massive proto-neutron stars, have higher mass-accretion rates, and therefore emit brighter neutrino luminosity and louder gravitational emissions.
[1] H. A. Abt and S. G. Levy. Multiplicity among solar-type stars. , 30:273–306, March 1976.
[2] H. A. Abt and S. G. Levy. Binaries among B2 - B5 IV, V absorption and emission stars. , 36:241–258, February 1978.
[3] W. David Arnett. A Possible Model of Supernovae: Detonation of 12C. , 5(2):180–212, October 1969.
[4] W. David Arnett, John N. Bahcall, Robert P. Kirshner, and Stanford E. Woosley. Supernova 1987A. , 27:629–700, January 1989.
[5] Sean M. Couch. The Dependence of the Neutrino Mechanism of Core-collapse Supernovae on the Equation of State. , 765(1):29, March 2013.
[6] Sean M. Couch, Carlo Graziani, and Norbert Flocke. An Improved Multipole Approximation for Self-gravity and Its Importance for Core-collapse Supernova Simulations. , 778(2):181, December 2013.
[7] C. de Jager, H. Nieuwenhuijzen, and K. A. van der Hucht. Mass loss rates in the Hertzsprung-Russell diagram. , 72:259–289, February 1988.
[8] Roland Diehl, Hubert Halloin, Karsten Kretschmer, Giselher G. Lichti, Volker Sch¨onfelder, Andrew W. Strong, Andreas von Kienlin, Wei Wang, Pierre Jean, J¨urgen Kn¨odlseder, Jean-Pierre Roques, Georg Weidenspointner, Stephane Schanne, Dieter H. Hartmann, Christoph Winkler, and Cornelia Wunderer. Radioactive 26Al from massive stars in the Galaxy. , 439(7072):45–47, January 2006.
[9] A. Dubey, L. B. Reid, and R. Fisher. Introduction to FLASH 3.0, with application to supersonic turbulence. Physica Scripta Volume T, 132:014046, December 2008.
[10] S. Ekstr¨om, C. Georgy, P. Eggenberger, G. Meynet, N. Mowlavi, A. Wyttenbach, A. Granada, T. Decressin, R. Hirschi, U. Frischknecht, C. Charbonnel, and A. Maeder. Grids of stellar models with rotation. I. Models from 0.8 to 120 M⊙ at solar metallicity (Z = 0.014). , 537:A146, January 2012.
[11] Y. Eriguchi and E. Mueller. A general computational method for obtaining equilibria of self-gravitating and rotating gases. , 146(2):260–268, May 1985.
[12] T. Fischer, S. C. Whitehouse, A. Mezzacappa, F. K. Thielemann, and M. Liebend¨orfer. The neutrino signal from protoneutron star accretion and black hole formation. , 499(1):1–15, May 2009.
[13] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo. FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes. , 131(1):273–334, November 2000.
[14] A. Heger, N. Langer, and S. E. Woosley. Presupernova Evolution of Rotating Massive Stars. I. Numerical Method and Evolution of the Internal Stellar Structure. , 528(1):368–396, January 2000.
[15] A. Heger, S. E. Woosley, and H. C. Spruit. Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields. , 626(1):350–363, June 2005.
[16] F. Herwig. The evolution of AGB stars with convective overshoot. , 360:952– 968, August 2000.
[17] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):90–95, 2007.
[18] R. Kippenhahn, G. Ruschenplatt, and H. C. Thomas. The time scale of thermohaline mixing in stars. , 91(1-2):175–180, November 1980.
[19] U. Kolb and H. Ritter. A comparative study of the evolution of a close binary using a standard and an improved technique for computing mass transfer. , 236:385–392, September 1990.
[20] N. Langer, K. J. Fricke, and D. Sugimoto. Semiconvective diffusion and energy transport. , 126(1):207, September 1983.
[21] P. Ledoux. Stellar Models with Convection and with Discontinuity of the Mean Molecular Weight. , 105:305, March 1947.
[22] M. Liebend¨orfer, S. C. Whitehouse, and T. Fischer. The Isotropic Diffusion Source Approximation for Supernova Neutrino Transport. , 698(2):1174–1190, June 2009.
[23] Peter MacNeice, Kevin M. Olson, Clark Mobarry, Rosalinda de Fainchtein, and Charles Packer. PARAMESH V4.1: Parallel Adaptive Mesh Refinement. Astrophysics Source Code Library, record ascl:1106.009, June 2011.
[24] Michela Mapelli, Mario Spera, Enrico Montanari, Marco Limongi, Alessandro Chieffi, Nicola Giacobbo, Alessandro Bressan, and Yann Bouffanais. Impact of the Rotation and Compactness of Progenitors on the Mass of Black Holes. , 888(2):76, January 2020.
[25] A. Marek, H. Dimmelmeier, H. Th. Janka, E. M¨uller, and R. Buras. Exploring the relativistic regime with Newtonian hydrodynamics: an improved effective gravitational potential for supernova simulations. , 445(1):273–289, January 2006.
[26] G. Meynet and A. Maeder. Stellar evolution with rotation. V. Changes in all the outputs of massive star models. , 361:101–120, September 2000.
[27] Anthony Mezzacappa, Pedro Marronetti, Ryan E. Landfield, Eric J. Lentz, R. Daniel Murphy, W. Raphael Hix, J. Austin Harris, Stephen W. Bruenn, John M. Blondin, O. E. Bronson Messer, Jordi Casanova, and Luke L. Kronzer. Core collapse supernova gravitational wave emission for progenitors of 9.6, 15, and 25 M⊙. , 107(4):043008, February 2023.
[28] T. Nugis and H. J. G. L. M. Lamers. Mass-loss rates of Wolf-Rayet stars as a function of stellar parameters. , 360:227–244, August 2000.
[29] Evan O’Connor and Christian D. Ott. A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes. Classical and Quantum Gravity, 27(11):114103, June 2010.
[30] Evan O’Connor and Christian D. Ott. Black Hole Formation in Failing CoreCollapse Supernovae. , 730(2):70, April 2011.
[31] W. Packet. On the spin-up of the mass accreting component in a close binary system. , 102(1):17–19, September 1981.
[32] Michael A. Pajkos, Sean M. Couch, Kuo-Chuan Pan, and Evan P. O’Connor. Features of Accretion-phase Gravitational-wave Emission from Two-dimensional Rotating Core-collapse Supernovae. , 878(1):13, June 2019.
[33] Michael A. Pajkos, MacKenzie L. Warren, Sean M. Couch, Evan P. O’Connor, and Kuo-Chuan Pan. Determining the Structure of Rotating Massive Stellar Cores with Gravitational Waves. , 914(2):80, June 2021.
[34] Kuo-Chuan Pan, Matthias Liebend¨orfer, Sean M. Couch, and Friedrich-Karl Thielemann. Equation of State Dependent Dynamics and Multi-messenger Signals from Stellar-mass Black Hole Formation. , 857(1):13, April 2018.
[35] Kuo-Chuan Pan, Matthias Liebend¨orfer, Sean M. Couch, and Friedrich-Karl Thielemann. Stellar Mass Black Hole Formation and Multimessenger Signals from Three-dimensional Rotating Core-collapse Supernova Simulations. , 914(2):140, June 2021.
[36] Kuo-Chuan Pan, Matthias Liebend¨orfer, Matthias Hempel, and FriedrichKarl Thielemann. Two-dimensional Core-collapse Supernova Simulations with the Isotropic Diffusion Source Approximation for Neutrino Transport. , 817(1):72, January 2016.
[37] Bill Paxton, Lars Bildsten, Aaron Dotter, Falk Herwig, Pierre Lesaffre, and Frank Timmes. Modules for Experiments in Stellar Astrophysics (MESA). , 192(1):3, January 2011.
[38] Bill Paxton, Matteo Cantiello, Phil Arras, Lars Bildsten, Edward F. Brown, Aaron Dotter, Christopher Mankovich, M. H. Montgomery, Dennis Stello, F. X. Timmes, and Richard Townsend. Modules for Experiments in Stellar Astrophysics (MESA): Planets, Oscillations, Rotation, and Massive Stars. , 208(1):4, September 2013.
[39] Bill Paxton, Pablo Marchant, Josiah Schwab, Evan B. Bauer, Lars Bildsten, Matteo Cantiello, Luc Dessart, R. Farmer, H. Hu, N. Langer, R. H. D. Townsend, Dean M. Townsley, and F. X. Timmes. Modules for Experiments in Stellar Astrophysics (MESA): Binaries, Pulsations, and Explosions. , 220(1):15, September 2015.
[40] Bill Paxton, Josiah Schwab, Evan B. Bauer, Lars Bildsten, Sergei Blinnikov, Paul Duffell, R. Farmer, Jared A. Goldberg, Pablo Marchant, Elena Sorokina, Anne Thoul, Richard H. D. Townsend, and F. X. Timmes. Modules for Experiments in Stellar Astrophysics (MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions. , 234(2):34, February 2018.
[41] Bill Paxton, R. Smolec, Josiah Schwab, A. Gautschy, Lars Bildsten, Matteo Cantiello, Aaron Dotter, R. Farmer, Jared A. Goldberg, Adam S. Jermyn, S. M. Kanbur, Pablo Marchant, Anne Thoul, Richard H. D. Townsend, William M. Wolf, Michael Zhang, and F. X. Timmes. Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation. , 243(1):10, July 2019.
[42] Philipp Podsiadlowski. The Progenitor of SN 1987A. , 104:717, September 1992.
[43] M. Renzo, R. J. Farmer, S. Justham, S. E. de Mink, Y. G¨otberg, and P. Marchant. Sensitivity of the lower edge of the pair-instability black hole mass gap to the treatment of time-dependent convection. , 493(3):4333–4341, April 2020.
[44] M. Renzo and Y. G¨otberg. Evolution of Accretor Stars in Massive Binaries: Broader Implications from Modeling ζ Ophiuchi. , 923(2):277, December 2021.
[45] Vincent Roma, Jade Powell, Ik Siong Heng, and Raymond Frey. Astrophysics with core-collapse supernova gravitational wave signals in the next generation of gravitational wave detectors. , 99(6):063018, March 2019.
[46] S. Rosswog and M. Liebend¨orfer. High-resolution calculations of merging neutron stars - II. Neutrino emission. , 342(3):673–689, July 2003.
[47] Andrew W. Steiner, James M. Lattimer, and Edward F. Brown. The Neutron Star Mass-Radius Relation and the Equation of State of Dense Matter. , 765(1):L5, March 2013.
[48] Dorottya Sz´ecsi, Norbert Langer, Sung-Chul Yoon, Debashis Sanyal, Selma de Mink, Christopher J. Evans, and Tyl Dermine. Low-metallicity massive single stars with rotation. Evolutionary models applicable to I Zwicky 18. , 581:A15, September 2015.
[49] The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, and Abbott et al. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. arXiv e-prints, page arXiv:2111.03606, November 2021.
[50] Matthew J. Turk, Britton D. Smith, Jeffrey S. Oishi, Stephen Skory, Samuel W. Skillman, Tom Abel, and Michael L. Norman. yt: A Multi-code Analysis Toolkit for Astrophysical Simulation Data. , 192(1):9, January 2011.
[51] S. Typel, G. R¨opke, T. Kl¨ahn, D. Blaschke, and H. H. Wolter. Composition and thermodynamics of nuclear matter with light clusters. , 81(1):015803, January 2010.
[52] St´efan van der Walt, S. Chris Colbert, and Ga¨el Varoquaux. The NumPy Array: A Structure for Efficient Numerical Computation. Computing in Science and Engineering, 13(2):22–30, March 2011.
[53] Jorick S. Vink, A. de Koter, and H. J. G. L. M. Lamers. Mass-loss predictions for O and B stars as a function of metallicity. , 369:574–588, April 2001.
[54] Pauli Virtanen, Ralf Gommers, Evgeni Burovski, Travis E. Oliphant, David Cournapeau, Warren Weckesser, alexbrc, Pearu Peterson, Josh Wilson, endolith, Nikolay Mayorov, Stefan van der Walt, Denis Laxalde, Matt Haberland, Matthew Brett, Andrew Nelson, Jarrod Millman, Tyler Reddy, Eric Larson, Lars, Ilhan Polat, eric-jones, CJ Carey, Robert Kern, Eric Moore, Tim Leslie, Josef Perktold, Yu Feng, Aditya Bharti, and Jake Vanderplas. scipy/scipy: SciPy 1.3.2. Zenodo, November 2019.
[55] S. E. Woosley, S. Blinnikov, and Alexander Heger. Pulsational pair instability as an explanation for the most luminous supernovae. , 450(7168):390–392, November 2007.
[56] S. E. Woosley, Ronald G. Eastman, Thomas A. Weaver, and Philip A. Pinto. SN 1993J: A Type IIb Supernova. , 429:300, July 1994.