研究生: |
葉欣儀 Yeh, Hsin-I |
---|---|
論文名稱: |
利用原位氫電漿處理閘堆疊以改善n型鍺金氧半電晶體之電特性研究 Improved Electrical Characteristics of Ge n-MOSFET with in-situ Hydrogen Plasma Treatment on Gate Stack |
指導教授: |
張廖貴術
ChangLiao, Kuei-Shu |
口試委員: |
趙天生
Chao, Tien-Sheng 李耀仁 Lee, Yao-Jen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | n型鍺金氧半電晶體 、氫電漿處理 、閘極製程 |
外文關鍵詞: | Ge n-MOSFET, hydrogen plasma, gate stack engineering |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鍺基板作為下一代前瞻的半導體材料,擁有比矽還要高的遷移率,可以使元件的功耗變低、使操作效率更好,但是製作二氧化鍺的時候會遇到許多問題,例如說在高溫下二氧化鍺會脫附成品質較差的氧化鍺,使得Ge/GeO2接面製程不容易維持良好的品質等。因此,適當的介面層處理是實現高性能金氧半鍺電晶體的關鍵,透過不同溫度的先、後氧化以及電漿製程處理來改善閘極介面品質,本論文研究以鍺基板nMOSFET為主題,探討不同閘極介面製程與汲極、源極的PN接面製程優化,並探討其電特性。
首先,使用氫電漿作為蝕刻的製程,利用H2 plasma與GeO2反應產生氣體的GeH4與H2O,使鍺基板的氧化層減少,探討不同秒數的蝕刻對熱氧化二氧化鍺介面的電性影響。實驗結果顯示,使用熱氧化GeO2搭配5秒氫處理,應用HfN/ZrO2 作為閘極介電層的元件,相較於未處理的元件可以使EOT由7.2 Å減少到6.3Å,同時介面產生的氧空缺最少,並有最佳的可靠度與均勻性。
第二部分是利用先沉積介電層、後氧化的製程,期望氧化層在高介電係數材料與鍺基板之間可以形成二氧化鍺介面層,觀察不同材料在後氧化製程對電容器的電性影響。實驗結果發現,後氧化製程的電容特性並沒有比氫電漿製程的好,但由不同材料的沉積結果可以發現,HfNx作為介電材料可以使電容特性有比較良好的表現。接著,再延伸探討不同溫度的先氧化製程對電容的特性影響,找到了p型鍺基板電容元件下,二氧化鍺的最佳形成溫度為350°C,可以使元件的均勻度與電性達到最佳。
最後一個部分,則是先利用不同方法的沉積製程製作佈植前的氧化犧牲層和隔離層來製作n+/p接面,希望能減少佈植缺陷與表面漏電流。再把前兩章所研究到的最佳化閘極使用於電晶體,搭配最佳的閘極參數與n+/p接面參數來製作金氧半鍺電晶體,探討不同的介面鈍化製程對電晶體的影響,研究結果顯示氨氣電漿的使用可以讓元件的電流開關比達到最高2.75個order、次臨界擺幅可以達到155mV/dec、且元件閘極漏電流在Vg=Vfb-1V時抑制到2.55×10-5A/cm2。
Germanium is regarded as one of promising semiconductor materials for next generation because of the higher carrier mobility than silicon, which can achieve high device performance. However, many problems of device degradation may be encountered. For example, GeO2 is easily desorbed at high temperature process, making it difficult to maintain good quality at Ge/GeO2 interface. Therefore, a suitable interface engineering is the key to realize high performance Ge MOSFET. In this thesis, Ge substrate/gate oxide interface is improved by pre-oxidation and post oxidation at suitable temperature, and various plasma passivation processes. The process optimization of n+/p junction is also studied. Finally, Ge n-MOSFETs are fabricated to investigate electrical characteristic.
First, a hydrogen plasma is used as oxide etching process. GeO2 is scavenged by reacting GeO2 with H2 plasma before high-κ gate dielectric deposition. Ge MOS capacitor with a H2 plasma treatment for 5 seconds shows the fewest oxygen vacancies and the best reliability and uniformity. Moreover, the equivalent oxide thickness can be reduced, compared to 7.3Å of sample without a H2 plasma treatment.
Second, effects of high-κ interfacial layers with post oxidation on electrical characteristic of Ge p-MOS devices are investigated. By using post oxidation, GeO2 interfacial layer would be formed at high-κ material and Ge substrate interface. The experimental results show that the electrical characteristics of device with post-oxidation are worse than those with a thermal grown GeO2 and hydrogen plasma process. It is also found that samples with HfNx interfacial layer show fewer border traps in gate dielectric. Then, GeO2 interfacial layer grown at different temperatures are investigated. It is observed that device with GeO2 grown at 350°C shows the best electrical characteristics and uniformity.
Third, in order to reduce the ion implantation-induced damage and surface leakage current, the n+/p junctions are passivated with thermal grown GeO2 sacrificial layer and the isolation layer. Finally, the effects of passivation process on Ge n-MOSFET with GeO2/HfNx/ZrO2 gate stack are studied. Device with NH3 plasma treatment shows the highest on-off ratio of 2.75 orders, small subthreshold swing of 155mV/decade, and small gate leakage current of 2.55×10-5A/cm2 at Vg=Vfb-1V.
[1] M. Passlack et al., "Self-aligned GaAs p-channel enhancement mode MOS heterostructure field-effect transistor," IEEE Electron Device Letters, vol. 23, no. 9, pp. 508-510, 2002.
[2] M. Yokoyama, K. Nishi, S. Kim, H. Yokoyama, M. Takenaka, and S. Takagi, "Self-aligned Ni-GaSb source/drain junctions for GaSb p-channel metal-oxide-semiconductor field-effect transistors," Applied Physics Letters, vol. 104, no. 9, p. 093509, 2014.
[3] S. K. Wang et al., "Desorption kinetics of GeO from GeO2/Ge structure," Journal of applied physics, vol. 108, no. 5, p. 054104, 2010.
[4] M. Razali, "Phosphorus activation and diffusion in germanium," University of Surrey, 2015.
[5] H. S. Momose et al., "Study of the manufacturing feasibility of 1.5-nm direct-tunneling gate oxide MOSFETs: uniformity, reliability, and dopant penetration of the gate oxide," IEEE transactions on electron devices, vol. 45, no. 3, pp. 691-700, 1998.
[6] M. Tyson. (2016). Intel confirms that its first 10nm chips will roll out in H2 2017. Available: https://hexus.net/tech/news/cpu/90674-intel-confirms-first-10nm-chips-will-roll-h2-2017/
[7] J. Robertson, "High dielectric constant oxides," The European Physical Journal-Applied Physics, vol. 28, no. 3, pp. 265-291, 2004.
[8] P. Liang, J. Jiang, and Y. Song, "Fringe-induced barrier lowering (FIBL) included sub-threshold swing model for double-gate MOSFETs," Journal of Physics D: Applied Physics, vol. 41, no. 21, p. 215109, 2008.
[9] D. Fischer and A. Kersch, "The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles," Applied Physics Letters, vol. 92, no. 1, p. 012908, 2008.
[10] K. Maitra, M. M. Frank, V. Narayanan, V. Misra, and E. A. Cartier, "Impact of metal gates on remote phonon scattering in titanium nitride/hafnium dioxide n-channel metal–oxide–semiconductor field effect transistors–low temperature electron mobility study," Journal of Applied Physics, vol. 102, no. 11, p. 114507, 2007.
[11] K. Kita et al., "Comprehensive study of GeO 2 oxidation, GeO desorption and GeO 2-metal interaction-understanding of Ge processing kinetics for perfect interface control," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4: IEEE.
[12] Y. Fukuda, Y. Yazaki, Y. Otani, T. Sato, H. Toyota, and T. Ono, "Low-Temperature Formation of High-Quality GeO2 Interlayer for High-k Gate Dielectrics/Ge by Electron-Cyclotron-Resonance Plasma Techniques," IEEE Transactions on Electron Devices, vol. 57, no. 1, pp. 282-287, 2010.
[13] C. Lee et al., "Ge MOSFETs performance: Impact of Ge interface passivation," in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 18.1. 1-18.1. 4: IEEE.
[14] L. Nyns et al., "Interface and border traps in Ge-based gate stacks," ECS Transactions, vol. 35, no. 3, pp. 465-480, 2011.
[15] C.-C. Li et al., "Improved Electrical Characteristics of Ge MOS Devices With High Oxidation State in HfGeOx Interfacial Layer Formed by In Situ Desorption," IEEE Electron Device Letters, vol. 35, no. 5, pp. 509-511, 2014.
[16] S.-H. Yi, K.-S. Chang-Liao, C.-W. Hsu, and J. Huang, "Improved Electrical Characteristics of~ 0.5 nm EOT Ge pMOSFET With GeON Interfacial Layer Formed by NH3 Plasma and Microwave Annealing Treatments," IEEE Electron Device Letters, vol. 39, no. 9, pp. 1278-1281, 2018.
[17] C. H. Lee, T. Nishimura, K. Nagashio, K. Kita, and A. Toriumi, "High-Electron-Mobility $\hbox {Ge/GeO} _ {2} $ n-MOSFETs With Two-Step Oxidation," IEEE Transactions on Electron Devices, vol. 58, no. 5, pp. 1295-1301, 2011.
[18] W. Zhu and T. Ma, "Temperature dependence of channel mobility in HfO2-gated NMOSFETs," IEEE Electron Device Letters, vol. 25, no. 2, pp. 89-91, 2004.
[19] T. C. Liu, H. Ikegaya, T. Nishimura, and A. Toriumi, "Ge n+/p junctions with high ON-to-OFF current ratio by surface passivation," IEEE Electron Device Letters, vol. 37, no. 7, pp. 847-850, 2016.
[20] G.-F. Yeap and S. Krishnan, "Fringing-induced barrier lowering (FIBL) in sub-100 nm MOSFETs with high-k gate dielectrics," Electronics Letters, vol. 34, no. 11, pp. 1150-1152, 1998.
[21] H. Matsubara, T. Sasada, M. Takenaka, and S. Takagi, "Evidence of low interface trap density in GeO2∕ Ge metal-oxide-semiconductor structures fabricated by thermal oxidation," Applied physics letters, vol. 93, no. 3, p. 032104, 2008.
[22] R. P. Chang, C. Chang, and S. Darack, "Hydrogen plasma etching of semiconductors and their oxides," Journal of Vacuum Science and Technology, vol. 20, no. 1, pp. 45-50, 1982.
[23] Y. Zheng, J. Lapano, G. Bruce Rayner Jr, and R. Engel-Herbert, "Native oxide removal from Ge surfaces by hydrogen plasma," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 36, no. 3, p. 031306, 2018.
[24] G. Brammertz, A. Alian, D. H.-C. Lin, M. Meuris, M. Caymax, and W.-E. Wang, "A Combined Interface and Border Trap Model for High-Mobility Substrate Metal–Oxide–Semiconductor Devices Applied to In0.53Ga0.47As and InP Capacitors," IEEE Transactions on Electron Devices, vol. 58, no. 11, pp. 3890-3897, 2011.
[25] R. Zhang, P.-C. Huang, J.-C. Lin, N. Taoka, M. Takenaka, and S. Takagi, "High-Mobility Ge p-and n-MOSFETs With 0.7-nm EOT Using HfO2/Al2O3/GeOx/Ge Gate Stacks Fabricated by Plasma Postoxidation," IEEE Transactions on Electron Devices, vol. 60, no. 3, pp. 927-934, 2013.
[26] C. H. Lee, T. Nishimura, K. Nagashio, K. Kita, and A. Toriumi, "High-Electron-Mobility Ge/GeO2 n-MOSFETs With Two-Step Oxidation," IEEE Transactions on Electron Devices, vol. 58, no. 5, pp. 1295-1301, 2011.
[27] D. Kuzum et al., "Ge-interface engineering with ozone oxidation for low interface-state density," IEEE Electron Device Letters, vol. 29, no. 4, pp. 328-330, 2008.
[28] K. Kutsuki, G. Okamoto, T. Hosoi, T. Shimura, and H. Watanabe, "Germanium oxynitride gate dielectrics formed by plasma nitridation of ultrathin thermal oxides on Ge (100)," Applied Physics Letters, vol. 95, no. 2, p. 022102, 2009.
[29] Q. Xie et al., "Effective electrical passivation of Ge (100) for HfO2 gate dielectric layers using O2 plasma," Electrochemical and Solid-State Letters, vol. 14, no. 5, pp. G20-G22, 2011.
[30] T. Tabata, C. H. Lee, K. Kita, and A. Toriumi, "Impact of high pressure O2 annealing on amorphous LaLuO3/Ge MIS capacitors," ECS Transactions, vol. 16, no. 5, pp. 479-486, 2008.
[31] Q. Xie et al., "Germanium surface passivation and atomic layer deposition of high-k dielectrics—A tutorial review on Ge-based MOS capacitors," Semiconductor Science and Technology, vol. 27, no. 7, p. 074012, 2012.