簡易檢索 / 詳目顯示

研究生: 林俊隆
Lin, Chun-Lung
論文名稱: 在無線感知網路上具資料失真保證之最佳化傳輸研究
Optimal Rate Allocation with Distortion Guarantee in WSNs
指導教授: 王家祥
Wang, Jia-Shung
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 78
中文關鍵詞: 感知器網路最佳化
外文關鍵詞: Sensor networks, Optimization, Rate-distortion allocation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Lossy compression techniques are commonly used by long-term data-gathering applications that attempt to identify trends or other interesting patterns in an entire system, since a data packet need not always be completely and immediately transmitted to the sink. In the applications, sensors are instructed to periodically sense massive data, and the data collected by nearby sensor nodes is also highly correlated both in time and in space. To exploit the data correlation, a nonterminal sensor node jointly encodes its own sensed data and the data received from its nearby nodes. The tendency for these nodes to have a high spatial correlation means that these data packets can be efficiently compressed together using a rate-distortion strategy. In rate-distortion theory, the correlation can be captured using a rate-distortion function. If the data have a high spatial
    correlation, as the coding rate increases its rate-distortion function will exponentially decrease rapidly due to higher compression. The rate-distortion slope indicates the reduction rate of the distortion with respect to the absolute rate. If the rate-distortion slope is steep, allocating few bits can already produce an acceptable compression quality, with allocating more bits only slightly further reducing the distortion. Based on
    the above rate-distortion concept, this dissertation addresses the optimal rate-distortion allocation problem, which determines an optimal bit rate of each sensor based on the target overall distortion to minimize the network transmission cost. This dissertation proposes optimal rate-distortion allocation schemes for single-hop, three-tier clusterbased and general sensor networks. The optimal rate-distortion allocation for general sensor networks is also extended to a distributed version to meet the distributed nature of data generation. Based on the presented methods, a heuristic algorithm is proposed to build the most efficient data transmission structure to further reduce the transmission cost. The proposed methods are evaluated via simulations using real-world data datasets. The simulation results show that the optimal allocation strategy can reduce the transmission cost to 6∼15% of that for the uniform allocation scheme. Moreover, the proposed methods would provide a significant performance gain if the system has three properties: (i) sensors are densely deployed, (ii) sensors are irregularly distributed, and (iii) the data gathered at sensors exhibit large temporal and spatial variations


    近年來,失真壓縮技術已被廣泛應用在長期收集大量連續資料的無線感知器網路系統以延長整體系統運作生命期,因為這些系統主要是收集長期的資料趨勢、分析有意義的統計數據、以及找出感興趣的特定資料樣板,所以通常可以允許少許的資料失真以及不需要及時的資料收集。在這些系統中,感知器被佈建來收集大量連續資料,而相鄰感知器的資料經常具備時間、空間的關連性,為了利用這些關聯性減少資料傳輸量,中間節點的感知器可將自己所收集的資料以及從鄰近節點所傳輸過來資料利用失真壓縮技術壓縮。過去的研究多著重在達到高壓縮率、有效省電以及分散式壓縮等議題,然而一個好的壓縮技術,均需輔以一個最佳化傳輸位元率分配的理論基礎,失真壓縮則是可以有效的透過Rate-distortion 的策略大量減少所需傳輸量。這篇論文研究透過rate-distortion最佳化分配,達到感知器系統省電的目的: 如何在滿足使用者對於資料失真度所能接受的需求下,最佳的決定如何分配各個感知器的壓縮位元率。一旦位元率能夠被準確的決定,感知器的資料就能夠很有效率的進行壓縮,達到傳輸最少的資料量,滿足使用者的查詢。本篇論文將rate-distortion 最佳化分配問題數學化,並且提出一個最佳化分配的數學解,為了要適應感知器網路的分散壓縮需求,我也根據數學最佳解提出一個分散式分配的策略,基於所提出的最佳化分配以及分散式分配策略,本篇論文也提出一個heuristic 演算法,從網路連結圖建立有效率的傳輸資料樹結構,更進一步的減少整體網路傳輸資料量。所提的方法均經由實際溫度資料驗證,實驗結果顯示最佳化分配以及分散式分配策略,的確能大量的減少整體網路傳輸資料量(跟均勻分配策略比較)。所提的方
    法在下列網路條件下會更有效益: (1) 感知器分布密度高,(2) 感知器分布不均勻以及(3) 感知器所收集的資料變化大。

    List of Figures iv List of Tables vii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Some Examples of Target Applications . . . . . . . . . . . . . . . . . 4 2 Preliminaries 7 2.1 Transform Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Embedded Zerotree Wavelet (EZW) Coding . . . . . . . . . . . . . . 11 2.4 Rate Distortion Functions at Higher Rate . . . . . . . . . . . . . . . . 13 2.5 Rate Distortion Functions at Lower Rate . . . . . . . . . . . . . . . . 13 3 Related Works 16 3.1 Coding by Slepian-Wolf Theory . . . . . . . . . . . . . . . . . . . . 16 3.2 Coding by Explicit Data Communication . . . . . . . . . . . . . . . . 17 3.3 Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 Optimal Rate-Distortion Allocation 21 4.1 Single-hop Sensor Networks . . . . . . . . . . . . . . . . . . . . . . 21 4.1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.2 Optimal Rate-Distortion Allocation (ORDA) scheme . . . . . 23 4.2 Three-tier Cluster-based Sensor Networks . . . . . . . . . . . . . . . 26 4.2.1 Problem statement and assumptions . . . . . . . . . . . . . . 26 4.2.2 ORDA scheme . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.2.1 Network architecture and Notations . . . . . . . . . 27 4.2.2.2 Distortion propagation model . . . . . . . . . . . . 28 4.2.2.3 Optimization . . . . . . . . . . . . . . . . . . . . . 29 4.2.3 Estimation of Rate Distortion Function . . . . . . . . . . . . 32 4.2.3.1 Empirical Approach . . . . . . . . . . . . . . . . . 32 4.2.3.2 Theoretical Approach . . . . . . . . . . . . . . . . 33 4.3 General Multi-hop Sensor Networks . . . . . . . . . . . . . . . . . . 36 4.3.1 ORDA scheme . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.3.1.1 Total Distortion . . . . . . . . . . . . . . . . . . . 37 4.3.1.2 Optimization . . . . . . . . . . . . . . . . . . . . . 40 4.3.2 Distributed Rate-Distortion Allocation (DRDA) scheme . . . 43 4.4 Transmission Structure . . . . . . . . . . . . . . . . . . . . . . . . . 47 5 Simulation Results 52 5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.2 Single-hop Sensor Network . . . . . . . . . . . . . . . . . . . . . . . 53 5.2.1 Performance evaluation . . . . . . . . . . . . . . . . . . . . 54 5.2.2 Range query . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3 Three-tier Cluster-based Sensor Networks . . . . . . . . . . . . . . . 57 5.3.1 Performance Gain Evaluation . . . . . . . . . . . . . . . . . 57 5.3.2 Accuracy of Distortion Propagation Model . . . . . . . . . . 58 5.4 General Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . 59 5.4.1 Performance of the proposed methods for N = 30 nodes . . . 61 5.4.1.1 Performance evaluation . . . . . . . . . . . . . . . 61 5.4.1.2 Effect of ϵ in the DRDA Scheme . . . . . . . . . . 62 5.4.2 Performance of the proposed methods for N = 64 nodes . . . 66 5.5 Performance of the ORDA Scheme with the GCT . . . . . . . . . . . 66 6 Conclusions and Future Works 70 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Bibliography 72

    [1] J. Acimovic, B. Beferull-Lozano, and R. Cristescu, ``Adaptive distributed algorithms for
    power-efficient data gathering in sensor networks,'' in Proc. Int'l Conf. Wireless Networks,
    Communications and Mobile Computing, 2005, pp. 946-951.
    [2] A. Ailamaki, C. Faloutos, P. S. Fischbeck, M. J. Small, and J. VanBriesen, ``An environmental
    sensor network to determine drinking water quality and security,'' SIGMOD Rec.,
    vol. 32, no. 4, pp. 47-52, 2003.
    [3] I. Akyildiz, T. Melodia, and K. Chowdury, ``Wireless multimedia sensor networks: A
    survey,'' IEEE Wireless Communications, vol. 14, no. 6, pp. 32-39, December 2007.
    [4] ATMO, ``Live from Earth and Mars project. University of Washington,'' http://www-k12.
    atmos.washington.edu/k12/grayskies/, 2007.
    [5] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, ``Compressive wireless sensing,'' in Proc.
    IPSN, 2006, pp. 134-142.
    [6] S. Bandyopadhyay and E. Coyle, ``An energy efficient hierarchical clustering algorithm
    for wireless sensor networks,'' in Proc. INFOCOM 2003, April 2003, pp. 1713-1723.
    [7] T. Banerjee, K. R. Chowdhury, and D. Agrawal, ``Using polynomial regression for data
    representation in wireless sensor networks,'' Int'l J. of Communication Systems, vol. 20,
    no. 7, pp. 829-856, July 2007.
    [8] R. Baraniuk, ``Compressive sensing,'' IEEE Signal Processing Magazine, vol. 24, no. 4,
    pp. 118-121, Jul. 2007.
    [9] E. Candes and M. Wakin, ``An introduction to compressive sampling,'' IEEE Signal Processing
    Magazine, vol. 25, no. 2, pp. 21-30, March 2008.
    [10] M. Cardei, M. Thai, Y. Li, and W. Wu, ``Energy-efficient target coverage in wireless
    sensor networks,'' in Proc. INFOCOM 2005, March 2005, pp. 1976-1984.
    [11] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang, ``Multi-dimensional regression analysis
    of time-series data streams,'' in Proc. VLDB, 2002, pp. 323-334.
    [12] J. Chou and D. Petrovic, ``A distributed and adaptive signal processing approach to reducing
    energy consumption in sensor networks,'' in Proc. INFOCOM 2003, 2003, pp.
    1054-1062.
    [13] A. Ciancio, S. Pattem, A. Ortega, and B. Krishnamachari, ``Energy-efficient data representation
    and routing for wireless sensor networks based on a distributed wavelet compression
    algorithm,'' in Proc. IPSN, 2006, pp. 309-316.
    [14] R. Cristescu and B. Beferull-Lozano, ``Lossy network correlated data gathering with highresolution
    coding,'' IEEE Trans. Information Theory, vol. 52, no. 6, pp. 2817-2824, June
    2006.
    [15] R. Cristescu, B. Beferull-Lozano, and M. Vetterli, ``Networked slepian-wolf: theory, algorithms,
    and scaling laws,'' IEEE Trans. Information Theory, vol. 51, no. 12, pp. 4057-
    4073, Dec. 2005.
    [16] R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. Wattenhofer, ``Network correlated
    data gathering with explicit communication: Np-completeness and algorithms,'' IEEE/
    ACM Trans. Networking, vol. 14, no. 1, pp. 41-54, Feb. 2006.
    [17] D. Culler, D. Estrin, and M. Srivastava, ``Overview of sensor networks,'' IEEE Computer,
    vol. 37, no. 8, pp. 41-49, 2004.
    [18] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos, ``Compressing historical information
    in sensor networks,'' in Proc. ACM SIGMOD, 2004, pp. 527-538.
    [19] ------, ``Dissemination of compressed historical information in sensor networks,'' VLDB
    J., vol. 16, no. 4, pp. 439-461, 2007.
    [20] D. Donoho, ``Compressed sensing,'' IEEE Trans. Inform. Theory, vol. 52, no. 4, pp. 1289-
    1306, Apr. 2006.
    [21] M. Duarte, S. Sarvotham, D. B. andM. B. Wakin, and R. Baraniuk, ``Distributed compressed
    sensing of jointly sparse signals,'' in Proc. Int'l Conf. Signals, Systems and Computers,
    November 2005, pp. 1537-1541.
    [22] M. Enachescu, A. Goel, R. Govindan, and R. Motwani, ``Scale free aggregation in sensor
    networks,'' in Proc. Int'l Workshop Algorithmic Aspects of Wireless Sensor Networks
    (Algosensors), 2004.
    [23] B. Escoffier and P. L. Hammer, ``Approximation of the quadratic set covering problem,''
    Discrete Optimization, vol. 4, no. 3-4, pp. 378-386, 2007.
    [24] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, ``Next century challenges: Scalable
    coordination in sensor networks,'' in Proc. ACM/IEEE Int'l Conf. Mobile Computing and
    Networking, August 1999, pp. 263-270.
    [25] D. Ganesan, D. Estrin, and J. Heidemann, ``Dimensions: why do we need a new data
    handling architecture for sensor networks?'' SIGCOMM Comput. Commun. Rev., vol. 33,
    no. 1, pp. 143-148, 2003.
    [26] A. Gersho and R. M. Gray, Vector quantization and signal compression. Norwell, MA,
    USA: Kluwer Academic Publishers, 1991, ch 6.
    [27] A. Goeland and D. Estrin, ``Simultaneous optimization for concave costs: single sink
    aggregation or single source buy-at-bulk,'' in Proc. ACM-SIAM symposium Discrete algorithms,
    2003, pp. 499-505.
    [28] H. Gupta, V. Navda, S. R. Das, and V. Chowdhary, ``Efficient gathering of correlated data
    in sensor networks,'' in Proc. ACM Int'l Conf. MobiHoc, 2005, pp. 402-413.
    [29] J. Haupt, W. U. Bajwa, M. Rabbat, , and R. Nowak, ``Compressed sensing for networked
    data,'' IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 92-101, 2008.
    [30] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, ``An application-specific protocol
    architecture for wireless microsensor networks,'' IEEE Trans. Wireless Communications,
    vol. 1, no. 4, pp. 660-670, Oct. 2002.
    [31] ------, ``Energy-efficient communication protocol for wireless microsensor networks,'' in
    Proc. Int'l Conf. System Sciences, Jan. 2000, pp. 3005-3014.
    [32] G. Hua and C. W. Chen, ``Correlated data gathering in wireless sensor networks based on
    distributed source coding,'' Int'l J. of Sensor Networks, vol. 4, no. 1/2, pp. 13-22, 2008.
    [33] Intellab, ``Intel Lab Dataset,'' http://berkeley.intel-research.net/labdata/, 2007.
    [34] B. Krishnamachari, D. Estrin, and S. B. Wicker, ``The impact of data aggregation in wireless
    sensor networks,'' in Proc. Int'l Conf. Distributed Computing Systems, 2002, pp. 575-
    578.
    [35] S. Kumar, T. H. Lai, and A. Arora, ``Barrier coverage with wireless sensors,'' in Proc.
    MobiCom 2005, 2005, pp. 284-298.
    [36] J. Li, A. Deshpande, and S. Khuller, ``On computing compression trees for data collection
    in wireless sensor networks,'' in Proc. INFOCOM 2010, 2010, pp. 1-9.
    [37] J. Li and P. Mohapatra, ``Analytical modeling and mitigation techniques for the energy
    hole problem in sensor networks,'' Pervasive Mob. Comput., vol. 3, no. 3, pp. 233-254,
    2007.
    [38] X. Li, Y. Kim, J. Young, R. Govindan, and W. Hong, ``Multi-dimensional range queries
    in sensor networks,'' in Proc. Int'l Conf. Embedded networked sensor systems (SenSys),
    2003, pp. 63-75.
    [39] J. Lian, N. Kshirasagar, and G. B. Agnew, ``Data capacity improvement of wireless sensor
    networks using non-uniform sensor distribution,'' Int'l J. of Distributed Sensor Networks,
    vol. 2, no. 2, pp. 121-145, 2006.
    [40] C.-L. Lin, H.-F. Wang, S.-K. Chang, and J.-S. Wang, ``Optimal rate allocation for rateconstrained
    applications in wireless sensor networks,'' in Proc. DCOSS'08, 2008, pp. 510-
    515.
    [41] C.-L. Lin and J.-S. Wang, ``Optimal rate allocation of compressed data streams in multihop
    sensor networks,'' in Proc. DCOSS'09, 2009, pp. 580-71.
    [42] J. Liu, M. Adler, D. Towsley, and C. Zhang, ``On optimal communication cost for gathering
    correlated data through wireless sensor networks,'' in Proc. ACM MobiCom, 2006,
    pp. 310-321.
    [43] C. Luo, F. Wu, J. Sun, and C. W. Chen, ``Compressive data gathering for large-scale
    wireless sensor networks,'' in Proc. MobiCom, 2009, pp. 145-156.
    [44] J. Luo and J.-P. Hubaux, ``Joint mobility and routing for lifetime elongation in wireless
    sensor networks,'' in Proc. INFOCOM 2005, March 2005, pp. 1735-1746.
    [45] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, ``Tag: a tiny aggregation
    service for ad-hoc sensor networks,'' SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 131-
    146, 2002.
    [46] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, ``Wireless sensor
    networks for habitat monitoring,'' in Proc. ACM Int'l Workshop Wireless Sensor Networks
    and Applications, 2002, pp. 88-97.
    [47] S. Mallat and F. Falzon, ``Analysis of low bit rate image transform coding,'' IEEE Trans.
    Signal Processing, vol. 46, no. 4, pp. 1027-1042, 1998.
    [48] D. Marco, E. J. Duarte-melo, M. Liu, and D. L. Neuhoff, ``On the many-to-one transport
    capacity of a dense wireless sensor network and the compressibility of its data,'' in Proc.
    IPSN'03, 2003, pp. 1-16.
    [49] C. Olston, B. T. Loo, and J. Widom, ``Adaptive precision setting for cached approximate
    values,'' SIGMOD Rec., vol. 30, no. 2, pp. 355-366, 2001.
    [50] S. Pattem, B. Krishnamachari, and R. Govindan, ``The impact of spatial correlation on
    routing with compression in wireless sensor networks,'' in Proc. IPSN'04, April 2004, pp.
    28-35.
    [51] J. Polastre, R. Szewczyk, and D. Culler, ``Telos: Enabling ultra-low power wireless research,''
    in Proc. IEEE/ACM IPSN/SPOTS, 2005.
    [52] S. S. Pradhan, J. Kusuma, and K. Ramchandran, ``Distributed compression in a dense
    microsensor network,'' IEEE Signal Processing Magazine, vol. 19, no. 2, pp. 51-60, Mar
    2002.
    [53] M. Rabbat, J. Haupt, A. Singh, and R. Nowak, ``Decentralized compression and predistribution
    via random gossiping,'' in Proc. IPSN, 2006, pp. 51-59.
    [54] A. Scaglione and S. D. Servetto, ``On the interdependence of routing and data compression
    in multi-hop sensor networks,'' in Proc. ACM MobiCom, 2002, pp. 140-147.
    [55] L. F. Shampine, R. C. Allen, and S. Pruess, Fundamentals of numerical computing. New
    York, NY, USA: John Wiley & Sons, Inc., 1997.
    [56] J. M. Shapiro, ``Embedded image coding using zerotrees of wavelet coefficients,'' IEEE
    Trans. Signal Processing, vol. 41, no. 12, pp. 3445-3462, Dec 1993.
    [57] Y. Shi and Y. Hou, ``Theoretical results on base station movement problem for sensor
    network,'' in Proc. INFOCOM 2008, 2008, pp. 1-5.
    [58] A. Silberstein, K. Munagala, and J. Yang, ``Energy-efficient monitoring of extreme values
    in sensor networks,'' in Proc. ACM SIGMOD, 2006, pp. 169-180.
    [59] D. Slepian and J. Wolf, ``Noiseless coding of correlated information sources,'' IEEE Trans.
    Information Theory, vol. 19, no. 4, pp. 471-480, Jul 1973.
    [60] S. Soro and W. B. Heinzelman, ``Cluster head election techniques for coverage preservation
    in wireless sensor networks,'' Ad Hoc Networks, vol. 7, no. 5, pp. 955-972, 2009.
    [61] X. Su, ``A combinatorial algorithmic approach to energy efficient information collection
    in wireless sensor networks,'' ACM Trans. Sen. Netw., vol. 3, no. 1, p. 6, 2007.
    [62] M. Suzuki, S. Saruwatari, N. Kurata, and H. Morikawa, ``A high-density earthquake monitoring
    system using wireless sensor networks,'' in Proc. Int'l Conf. Embedded Networked
    Sensor Systems, 2007, pp. 373-374.
    [63] X. Tang and J. Xu, ``Adaptive data collection strategies for lifetime-constrained wireless
    sensor networks,'' IEEE Trans. Parallel and Distributed Systems, vol. 19, no. 6, pp. 721-
    734, June 2008.
    [64] ------, ``Optimizing lifetime for continuous data aggregation with precision guarantees in
    wireless sensor networks,'' IEEE/ACM Trans. Networking, vol. 16, no. 4, pp. 904-917,
    Aug. 2008.
    [65] Y. C. Wang, Y. Y. Hsieh, and Y. C. Tseng, ``Multiresolution spatial and temporal coding
    in a wireless sensor network for long-term monitoring applications,'' IEEE Trans. Computers,
    vol. 58, no. 6, pp. 827-838, 2009.
    [66] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz, and J. Lees,
    ``Deploying a wireless sensor network on an active volcano,'' IEEE Internet Computing,
    vol. 10, no. 2, pp. 18-25, 2006.
    [67] M. Wu, J. Xu, X. Tang, and W.-C. Lee, ``Top-k monitoring in wireless sensor networks,''
    IEEE Trans. Knowledge and Data Engineering, vol. 17, no. 7, pp. 962-976, 2007.
    [68] X. Wu, G. Chen, and S. K. Das, ``Avoiding energy holes in wireless sensor networks with
    nonuniform node distribution,'' IEEE Trans. Parallel and Distributed Systems, vol. 19,
    no. 5, pp. 710-720, 2008.
    [69] A. Wyner and J. Ziv, ``The rate-distortion function for source coding with side information
    at the decoder,'' IEEE Trans. Information Theory, vol. 22, no. 1, pp. 1-10, jan 1976.
    [70] Z. Xiong, A. Liveris, and S. Cheng, ``Distributed source coding for sensor networks,''
    IEEE Signal Processing Magazine, vol. 21, no. 5, pp. 80-94, sept. 2004.
    [71] S. Yoon and C. Shahabi, ``The clustered aggregation (cag) technique leveraging spatial
    and temporal correlations in wireless sensor networks,'' ACM Trans. Sen. Netw., vol. 3,
    no. 1, p. 3, 2007.
    [72] M. Younis, M. Bangad, and K. Akkaya, ``Base-station repositioning for optimized performance
    of sensor networks,'' IEEE Int'l Conf. Vehicular Technology, vol. 5, pp. 2956-2960,
    Oct. 2003.
    [73] O. Younis and S. Fahmy, ``Heed: A hybrid, energy-efficient, distributed clustering approach
    for ad hoc sensor networks,'' IEEE Trans. Mobile Computing, vol. 3, no. 4, pp.
    366-379, 2004.
    [74] M. Youssef, A. Youssef, and M. Younis, ``Overlapping multihop clustering for wireless
    sensor networks,'' IEEE Trans. Parallel and Distributed Systems, vol. 20, no. 12, pp. 1844-
    1856, Dec 2009.
    [75] K. Yuen, B. Liang, and B. Li, ``A distributed framework for correlated data gathering in
    sensor networks,'' IEEE Trans. Vehicular Technology, vol. 57, no. 1, pp. 578-593, 2008.
    [76] D. Zeinalipour-yazti, S. Neema, V. Kalogeraki, D. Gunopulos, and W. Najjar, ``Data
    acquisition in sensor networks with large memories,'' in Proc. IEEE Int'l Workshop Networking
    Meets Databases, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE