簡易檢索 / 詳目顯示

研究生: 巫國維
論文名稱: 固體觸媒生產生質柴油之研究
指導教授: 黃世傑
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 69
中文關鍵詞: 生質柴油固體觸媒甲基酯轉酯化
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 油價的高漲,環保意識的抬頭,發展新型態且乾淨的替代能源成為全世界的首要目標。就目前發展的生質能而言,生質柴油能以回收的廢食用油進行生產,且具有生物可分解性、不含硫、無苯環化合物、燃燒排放物質較無污染,是一種兼顧環保並可永續經營的能量來源。

    本研究主要先由各種觸媒進行轉酯化反應,嘗試找出具有發展潛力之觸媒,經實驗評估後選定CsF/α-Al2O3為本研究主要探討之觸媒,再以各種方法嘗試提高轉酯化反應之轉化率。

    為了減少質傳阻力對實驗的影響,進行轉速探討;為了增加觸媒活性,改變含浸在載體上的量、觸媒載體與鍛燒溫度;醇油比的大小與觸媒添加比例亦為影響反應轉化率的關鍵因素。經實驗結果歸納得到:4.0 mmol CsF/g γ-Al2O3對轉酯化反應於60 ℃進行,醇油比12:1,轉速400 rpm,觸媒添加量8 %為較佳的反應條件,當反應進行1小時,轉化率達91%。但在觸媒重複使用性上,觸媒僅能使用一次,是此觸媒應用在轉酯化反應上的限制。

    觸媒具有反應性之原因是由於CsF與γ-Al2O3共同存在時,含浸鍛燒後產生具催化能力的活性位置,以純CsF作為觸媒進行反應,不具催化能力,因此無法產生任何的甲基酯。


    第一章 緒論 1 第二章 文獻回顧 3 2.1 生質柴油 3 2.2 生質柴油性質 4 2.3 生質柴油製造 9 2.3.1 生質柴油發展 9 2.3.2 轉酯化反應 10 2.3.3 酸與水分對鹼製程影響 11 2.4 現階段生質柴油製程發展 12 2.5 固體觸媒於生產生質柴油之發展 14 2.6 觸媒製造的一般方法 18 2.6.1 沈澱法 18 2.6.2 含浸法 19 第三章 實驗材料與方法 20 3.1 研究內容 20 3.2 實驗材料 20 3.2.1 藥品 20 3.2.2 反應設備 22 3.2.3 實驗設備 22 3.3 觸媒之製備 24 3.3.1 KNO3/γ-Al2O3觸媒之製備 24 3.3.2 K2CO3/γ-Al2O3觸媒之製備 24 3.3.3 SO42-/γ-Al2O3觸媒之製備 24 3.3.4 FASCAT4201酯化反應用觸媒 24 3.3.5 Fe(NO3)3/γ-Al2O3觸媒之製備 25 3.3.6 NaNO3/γ-Al2O3觸媒之製備 25 3.3.7 KNO3/zeolite-Y觸媒之製備 25 3.3.8 KHCO3/γ-Al2O3觸媒之製備 25 3.3.9 CsF/α-Al2O3觸媒之製備 25 3.3.10 CsF/γ- Al2O3觸媒之製備 26 3.4 轉酯化實驗 26 3.4.1 比較觸媒反應性實驗 26 3.4.2 轉速探討 26 3.4.3 觸媒組成探討 27 3.4.4 甲醇比例探討 27 3.4.5 觸媒添加量探討 27 3.4.6 觸媒重複使用性探討 27 3.5 分析方法 28 3.5.1 總酯及轉化率之量測與計算 28 3.5.2 含水率之測定方法 30 3.5.3 觸媒成分分析 30 3.5.4 鹼強度與鹼度測定 30 第四章 結果與討論 32 4.1 固體觸媒轉酯化反應 32 4.1.1 轉化率分析方法之建立 32 4.1.2 觸媒反應性之依據 33 4.2 觸媒反應性探討 34 4.2.1 KNO3/γ-Al2O3觸媒反應性探討 34 4.2.2 K2CO3/γ-Al2O3觸媒反應性探討 36 4.2.3 SO42-/γ-Al2O3、FASCAT4201、Fe(NO3)3/γ-Al2O3觸媒反應性探討 38 4.2.4 觸媒XRD分析 39 4.2.5 NaNO3/γ-Al2O3觸媒反應性探討 39 4.2.6 KNO3/zeolite-Y觸媒反應性探討 40 4.2.7 KHCO3/γ-Al2O3觸媒反應性探討 40 4.2.8 CsF/α-Al2O3觸媒反應性探討 42 4.3 CsF/Al2O3觸媒之較佳化條件 45 4.3.1 CsF/α-Al2O3負載比例探討 45 4.3.2 CsF觸媒載體改變 47 4.3.3 反應器攪拌參數研究 53 4.3.4 CsF/γ-Al2O3負載比例探討 54 4.3.5 CsF/γ-Al2O3鍛燒溫度探討 57 4.3.6 醇油比之影響 59 4.3.7 觸媒添加比例影響 60 4.3.8 觸媒重複使用性 62 4.3.9 觸媒活性之探討 63 第五章 結論 65 參考文獻 66

    李秉傑,邱宏明,王奕凱合譯 (1988)。非均勻係催化原理應用,110-113。台北:渤海堂文化事業有限公司。
    吳耿東、李宏台 (2004)。生質能源---化腐朽為能源。科學發展月刊,383,20-27。
    翁鴻山 (2003)。反應中的紅娘。科學發展月刊,370,6-11。
    Agarwal, A. K. (1992) Performance evaluation and emission characteristics of a compression ignition engine using esterified biodiesel. Centre for Energy Studies, 82.
    Agarwal, A. K. and Das, L. M. (2001) Biodiesel development and characterization for use as a fuel in compression ignition engines. Journal of Engineering for Gas Turbines and Power-transactions of the ASME 123(2), 440-447.
    Antolin, G., Tinaut, F. V., Briceno, Y., Castano, V., Perez, C., and Ramirez, A. I. (2002) Optimisation of biodiesel production by sunflower oil transesterification. Bioresource Technology 83(2), 111-114.
    Arata, K. (1996) Preparation of superacids by metal oxides for reactions of butanes and pentanes. Applied Catalysis A: General 146, 3-32.
    ASTM International, (2005) Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration. ASTM D 6304-04.
    ASTM International, (2006) Standard Test Method for Determination of Water in Petroleum Products, Lubricating Oils, and Additives by Coulometric Karl Fischer Titration. ASTM D 664-06.
    Baird, T., Bendada, A., Webb, G., and Winfield J. M. (1991) Alkali-metal fluorides supported on γ-Alumina - Surface reactions involving 18F- and 35S-labelled sulphur tetrafluoride and thionyl fluoride, 35S-labelled sulphur dioxide, l8F- and 14C-labelled carbonyl fluoride and 14C-labelled carbon dioxide. Journal of Materials Chemistry 1(6), 1071-1077
    Billaud, F., Dominguez, V., Broutin, P., and Busson, C. (1995) Production of Hydrocarbons by Pyrolysis of Methyl-esters from Rapeseed oil. Journal of the American Oil Chemists Society 72(10), 1149-1154.
    Cantrell, D. G., Gillie, L. J., Lee, A. F., and Wilson K. (2005). Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis. Applied Catalysis A: General 287, 183–190.
    Cetinkaya, M. and Karaosmanoglu, F. (2004) Optimization of base-catalyzed transesterification reaction of used cooking oil. Energy and Fuels 18(6), 1888-1895.
    Clacens, J. M., Genuit, D., Veldurthy, B., Bergeret, G., Delmotte, L., Garcia-Ruiz1, A., and Figueras, F. (2004) CsF supported by α-alumina: an efficient basic catalyst. Applied Catalysis B: Environmental 53, 95–100
    Demirbas, A. (2002) Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion and Management 43(17), 2349-2356.
    Demirbas, A. (2003) Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Conversion and Management 44(13), 2093-2109.
    Di Serio, M., Ledda, M., Cozzolino, M., Minutillo, G., Tesser, R., and Santacesaria E. (2006). Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Industrial and Engineering Chemistry Research 45, 3009-3014.
    Ebiura, T., Echizen, T., Ishikawa, A., Murai, K., and Baba, T. (2005) Selective transesterification of triolein with methanol to methyl oleate and glycerol using alumina loaded with alkali metal salt as a solid-base catalyst. Applied Catalysis A: General 283, 111–116.
    European Committee for Standardization, (2002) Fat and oil derivatives – Fatty Acid Methyl Esters (FAME) – Determination of ester and linolenic acid methyl ester contents. EN 14103.
    Fangrui, M. and Milford, A. H. (1999) Biodiesel production: a review. Bioresource Technology 70, 1-15.
    Freedman, B., Butterfield, R. O., and Pryde, E. H. (1986) Transesterification kinetics of soybean oil. Journal of the American Oil Chemists Society 63(10), 1375-1380.
    Freedman, B., Pryde, E. H., and Mounts, T. L. (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists Society 61(10), 1638-1643.
    Furuta, S., Matsuhashi, H., and Arata, K. (2004) Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catalysis Communications 5, 721–723.
    Haas, M. J., Michalski, P. J., Runyon, S., Nunez, A., and Scott, K. M. (2003) Production of FAME from acid oil, a by-product of vegetable oil refining. Journal of the American Oil Chemists Society 80(1), 97-102.
    Haba, O., Itakura, I., Ueda, M., and KUZE, S. (1999) Synthesis of polycarbonate from dimethyl carbonate and bisphenol-A through a non-phosgene process. Journal of Polymer Science Paet A - Polymer Chem.istry 37(13), 2087-2093
    Hsu, J. P. and Wong, J. J. (2006) Melt transesterification of polycarbonate catalyzed by DMAP. Industrial and Engineering Chemistry Research 45(8), 2672-2676
    Jitputti, J., Kitiyanan, B., Rangsunvigit, P., Bunyakiat, K., Attanatho, L., and Jenvanitpanjakul, P. (2006) Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal 116, 61–66.
    Kim, H. J., Kanga, B. S., Kima, M. J., Park, Y. M., Kimb, D. K., and Lee, J. S. (2004) Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catalysis Today 93–95, 315–320.
    Knothe, G., Matheaus, A. C., and Ryan, T. W. (2003) Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel 82(8), 971-975.
    Lo´pez, D. E., Goodwin Jr., J. G., Bruce, D. A., and Lotero, E. (2005) Transesterification of triacetin with methanol on solid acid and base catalysts. Applied Catalysis A: General 295, 97–105.
    Li, M. S., Ma, C. C. M., Chen, J. L., Lin, M. L. and Chang, F. C. (1996) Epoxy-polycarbonate blends catalyzed by a tertiary amine. 1. mechanism of transesterification and cyclization. Macromolecules 29(2), 499-506
    Liang, Y. C., May, C. Y., Foon, C. S., Ngan, M. A., Hock, C. C., and Basiron Y. (2006) The effect of natural and synthetic antioxidants on the oxidative stability of palm diesel. Fuel 85(5-6), 867-870.
    Ma, F. R. and Hanna, M. A . (1999) Biodiesel production: a review. Bioresource Technology 70(1), 1-15.
    Mazzocchia, C., Modica, G., Kaddouri, A., and Nannicini, R. (2004) Fatty acid methyl esters synthesis from triglycerides over heterogeneous catalysts in the presence of microwaves. Compets Rendus Chimie 7, 601–605.
    Noureddini, H., Gao, X., and Philkana, R. S. (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technology 96(7), 769-777.
    Noureddini, H. and Zhu, D. (1997) Kinetics of transesterification of soybean oil. Journal of the American Oil Chemists Society 74(11), 1457-1463.
    Onay, O., Beis, S. H., and Kockar, O. M. (2001) Fast pyrolysis of rape seed in a well-swept fixed-bed reactor. Journal of Analytical and Applied Pyrolysis 58, 995-1007.
    Pryde, E. H. (1984) Vegetable oils as fuel alternatives – symposium overview. Journal of the American Oil Chemists Society 61, 1609-1610.
    Pryor, R. W., Hanna, M. A., Schinstock, J. L., and Bashford, L. L. (1983) Soybean oil fuel in a small diesel engine. Transactions of the ASAE 26(2), 333-337.
    Reddy, C. R. V., Oshel, R., and Verkade, J. G. (2006) Room-temperature conversion of soybean oil and poultry fat to biodiesel catalyzed by nanocrystalline calcium oxides. Energy and Fuels 20, 1310-1314.
    Robert, T. M., Robert, and N. B. (1999) Organic Chemistry. (6th ed.). Prentice Hall International, Inc. New York, America.
    Saka, S., and Kusdiana, D. (2001) Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80(2), 225-231.
    Schwab, A.W., Bagby, M.O., and Freedman, B. (1987) Preparation and properties of diesel fuels from vegetable oils. Fuel 66, 1372-1378.
    Schwab, A. W., Dykstra, G. J., Selke, E., Sorenson, S. C., and Pryde, E. H. (1988). Diesel fuel from thermal decomposition of soybean oil. Journal of the American Oil Chemists Society 65, 1781-1786.
    Shay, E.G. (1993) Diesel fuel from vegetable oils: status and opportunities. Biomass and Bioenergy 4, 227-242.
    Shimada, Y., Watanabe, Y., Sugihara, A., and Tominaga, Y. (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. Journal of Molecular Catalysis B-enzymatic 17(3-5), 133-142.
    Srivastava, A. and Prasad, R. (2000) Triglycerides-based diesel fuels. Renewable and Sustainable Enerty Reviews 4(2), 111-133.
    Suppes, G. J., Dasari, M. A., Doskocil, E. J., Mankidy, P. J., and Goff, M. J. (2004) Transesterification of soybean oil with zeolite and metal catalysts. Applied Catalysis A: General 257, 213–223.
    Tanabe, K., Solid Acids and Bases, Academic, New York (1970).
    Veldurthy, B., Clacens, J. M., and Figueras, F. (2005) Correlation between the basicity of solid bases and their catalytic activity towards the synthesis of unsymmetrical organic carbonates. Journal of Catalysis 229, 237–242
    Vicente, G., Martinez, M., and Aracil, J. (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology 92(3), 297-305.
    Xie, W. and Huang, X. (2006). Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst. Catalysis Letters 107, 53-59.
    Xie, W., Peng, H., and Chen, L. (2006a) Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. Journal of Molecular Catalysis A: Chemical 246, 24–32.
    Xie, W., Peng, H., and Chen, L. (2006b) Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A: General 300, 67–74.
    Yamaguchi, T. and Ookawa, M. (2006) A consideration on the state of dispersed metal nitrate and carbonate of Group 1 and 2 elements and basicity generation. Catalysis Today 116, 191–195
    Ziejewski, M., Kaufman, K. R., Schwab, A. W., and Pryde, E. H. (1984) Diesel engine evaluation of a nonionic sunflower oil-aqueous ethanol microemulsion. Journal of the American Oil Chemists Society 61, 1620-1626.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE