簡易檢索 / 詳目顯示

研究生: 陳忠煌
Chen, Chung-Huang
論文名稱: 第二型富含半胱胺酸蛋白質在血管平滑肌細胞表現之調節機制以及其調控細胞移動之機轉
Cysteine-rich Protein 2 Expression in Vascular Smooth Muscle Cells and Its Role in Regulating Cellular Migration
指導教授: 林秀芳
Yet, Shaw-Fang
莊永仁
Chuang, Yung-Jen
口試委員: 陳令儀
Linyi Chen
李秀珠
Shiow-Ju Lee
郭呈欽
Cheng-Chin Kuo
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 100
中文關鍵詞: 平滑肌細胞第二型富含半胱胺酸蛋白質血管疾病細胞遷徙p130Cas蛋白質轉殖基因小鼠
外文關鍵詞: VSMC, Cysteine-rich Protein2, Vascular disease, Cell migration, p130 Crk-associated substrate, Transgenic mice
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 動脈血管壁中層的平滑肌細胞(vascular smooth muscle cells, VSMCs)在血管栓塞病變的過程中扮演著重要的角色。第二型富含半胱胺酸蛋白質(cysteine-rich protein2, CRP2)屬於LIM蛋白族的一員,其蛋白結構含有兩個LIM結構域。CRP2在血管受創病變的過程扮演著重要的角色。CRP2主要會表現在平滑肌細胞,並藉由抑制細胞的遷徙能力而減低了血管栓塞損傷的形成。本論文有兩個主要的研究目的,第一是研究CRP2在VSMCs表現的調控機制,第二是研究CRP2調節VSMC遷徙能力的分子調控機制。
    先前的研究已經證實了,在老鼠發育中的血管內CRP2基因的表現必需要有5’端基因啟動子的存在,而在成鼠血管內只有啟動子則是不夠的。而此研究論文的第一個研究目的是要探討CRP2在成鼠血管VSMCs表現的調控機制。我們構築了一系列含有CRP2可能的基因調控序列並帶有乳糖酵素報導基因(LacZ reporter gene)的轉殖載體,並且生產了這一系列轉殖基因小鼠。我們發現CRP2基因的第一內含子(intron1)在成鼠血管是必需的序列,但是在發育中血管則不是必需的。序列分析顯示CRP2 intron1的6.3-kb區段內含有兩個CArG (CC(A/T)6GG)序列,而在凝膠阻滯分析(gel mobility shift assay)以及染色質免疫沉澱分析(chromatin immunoprecipitation)實驗結果發現血清反應因子(SRF)比較趨向與CArG2序列結合,另外也發現SRF的輔因子心肌素(myocardin)及相關分子主要是透過CArG2序列來誘發CRP2的表現。針對不同突變型的轉殖基因老鼠血管研究,我們進一步發現CArG2是調控LacZ報導基因在成鼠血管平滑肌細胞表現的主要調控序列。所以在發育中血管CRP2的表現雖然與CArG序列沒有相關,但是在成鼠血管平滑肌細胞CRP2則需要第一內含子的CArG2序列的存在。總合這部分的研究結果,顯示CRP2在發育中血管與在成鼠血管的VSMCs表現是經由不同的分子機制進行調控。
    由之前的研究已經知道缺少CRP2會促使VSMC遷徙能力增加,因而在血管受創傷時會使得血管內膜明顯增生。因此,第二部分的研究目的是要找出CRP2調節VSMCs細胞遷徙的分子機制。在平滑肌細胞內轉殖表現CRP2-EGFP綠色螢光蛋白的結果顯示出CRP2主要是表現在VSMCs內與肌動蛋白相關聯的細胞骨架上,這透露出CRP2具有細胞骨架相關的功能。由我們的實驗發現VSMCs對於不同細胞外基質的貼附能力與延展能力並沒有因為缺乏CRP2而有不同。而CRP2剔除的細胞在化學引誘劑的刺激下會表現出較多且明顯的層狀偽足(lamellipodia)。在CRP2剔除VSMCs重新轉殖表現CRP2之後,化學引誘劑所引發的細胞層狀偽足以及細胞遷徙能力則明顯降低。哺乳動物細胞蛋白質交互作用分析(mammalian two-hybrid assay) 以及免疫共沈澱法(co-immunoprecipitation)的實驗證實了CRP2與細胞遷徙以及偽足形成調控相關的蛋白質p130Cas有交互作用。有趣地,我們發現血管創傷會影響p130Cas的磷酸化程度。另外,進一步地抑制p130Cas的表現或是磷酸化也發現血管受創後內膜增生的情況減弱了,這暗示著p130Cas以及其磷酸化在血管創傷修復扮演著重要的角色。免疫螢光染色分析進一步發現,在靜止的細胞內CRP2與p130Cas會一同表現在細胞骨架纖維束末端的附著點(FAs)。有趣的是,磷酸化p130Cas在遷徙中的細胞內會表現在附著點以及偽足的前緣上,而CRP2則僅會表現於附著點以及骨架纖維束。總而言之,我們的研究結果顯示CRP2會箝制p130Cas在細胞的附著點,因而降低了偽足的形成並且減弱了VSMC的遷徙能力。


    Vascular smooth muscle cells (VSMCs) of the arterial wall play a critical role in the development of occlusive vascular lesions. Cysteine-rich protein (CRP) 2, a member of the LIM-only CRP family that contains two LIM domains, plays an important role in vascular remodeling. CRP2 is expressed in VSMCs and functions to reduce vascular lesion formation by inhibiting cellular migration. The goals of this study are (i) to investigate the molecular mechanisms that control CRP2 expression in VSMCs, and (ii) to define the molecular mechanisms by which CRP2 regulates VSMC migration.
    We previously demonstrated that the 5’-flanking Csrp2 (gene symbol of the mouse CRP2 gene) promoter is sufficient for gene expression in the developing vessels but not sufficient for adult vasculature. In the present study, the first goal was to elucidate the molecular mechanisms that control CRP2 expression in the adult vasculature. By generating and analyzing a series of transgenic mice harboring potential Csrp2 regulatory regions with a lacZ reporter, we determined that the 12-kb first intron was necessary for transgene activity in adult but not in developing vasculature. Within the intron we identified a 6.3-kb region that contains 2 CArG boxes (CC(A/T)6GG). Serum response factor (SRF) preferentially bound to CArG2 box in gel mobility shift and chromatin immunoprecipitation assays; additionally, SRF coactivator myocardin and the related factors activated CRP2 expression via the CArG2 box. Mutational analysis revealed that CArG2 box was important in directing lacZ expression in VSMCs of adult vessels. Although CRP2 expression during development is independent of CArG box regulatory sites, CRP2 expression in adult VSMCs requires CArG2 element within the first intron. Our results suggest that distinct mechanisms regulate CRP2 expression in VSMCs that are controlled by separate embryonic and adult regulatory modules.
    Given that an absence of CRP2 enhances VSMC migration and increases neointima formation following arterial injury, the second specific goal of this study was to define the molecular mechanisms by which CRP2 regulates VSMC migration. Transfection of VSMCs with CRP2-EGFP constructs revealed that CRP2 is associated with the actin cytoskeleton, suggesting a cytoskeletal function of CRP2. Lack of CRP2 did not affect cell’s ability to adhere to or spread on extracellular matrix. In response to chemoattractant stimulation, Csrp2-deficient (Csrp2–/–) VSMCs exhibited increased lamellipodia formation. Re-introduction of CRP2 abrogated the enhanced lamellipodia formation and migration of Csrp2–/– VSMCs following chemoattractant stimulation. Mammalian two-hybrid and co-immunoprecipitation assays demonstrated that CRP2 interacts with p130Cas, a scaffold protein important for lamellipodia formation and cell motility. Intriguingly, vascular injury modulated p130Cas phosphorylation levels. Furthermore, suppression of p130Cas expression or its phosphorylation attenuated neointima formation following arterial injury, suggesting an important role of p130Cas and its phosphorylation in vascular remodeling. Immunofluorescence staining showed that CRP2 colocalized with phospho-p130Cas at focal adhesions (FAs)/terminal ends of stress fibers in non-migrating cells. Interestingly, in migrating cells phospho-p130Cas localized to the leading edge of lamellipodia and FAs, whereas CRP2 was restricted to FAs and stress fibers. Taken together, our results indicate that CRP2 sequesters p130Cas at FAs, thereby reducing lamellipodia formation and blunting VSMC migration.

    Abstract 1 中文摘要 3 Abbreviations 5 Chapter 1. General Introduction 6 1.1 Vascular smooth muscle cells 7 1.2 Cysteine-rich protein 2 8 1.2.1 LIM protein family 8 1.2.2 Cysteine-rich protein family 8 1.2.3 Cysteine-rich protein 2 9 1.3 p130Cas (Crk-associated substrate) 12 1.4 Objectives 13 Chapter 2. Material and Methods 16 2.1 Transgenic Mice 17 2.2 Cell Culture and Transient Transfection Assays 18 2.3 Construction of Expression Plasmids 19 2.3.1 Luciferase reporter plasmids 19 2.3.2 CRP2 expression plasmids 20 2.4 Electrophoretic Mobility Shift Assays 21 2.5 Chromatin Immunoprecipitation Assays 21 2.6 Adhesion, Spreading, and Migration Assays 22 2.7 Immunofluorescence 24 2.8 Mammalian Two-hybrid Assays 25 2.9 Mouse Vascular Remodeling Model and Histological Analysis 25 2.10 Coimmunoprecipitation 27 2.11 Statistical Analysis 27 Chapter 3. Intronic CArG Box Regulates Cysteine-rich Protein 2 Expression in the Adult but Not in Developing Vasculature 28 3.1 Introduction 29 3.2 Results 30 3.2.1 Csrp2 intron 1 is required for lacZ transgene expression in VSMCs of adult blood vessels 30 3.2.2 Two CArG elements are present in intron 1 of the Csrp2 gene 31 3.2.3 SRF coactivators upregulate Csrp2 transcription via intron 1 sequences in VSMCs 33 3.2.4 Intronic CArG elements are important for lacZ transgene expression in VSMCs of adult vessels 34 3.2.5 CArG2 is important for Csrp2 expression in adult blood vessels 35 3.3 Discussion 36 Chapter 4. Cysteine-rich Protein 2 Alters p130Cas Localization and Inhibits Vascular Smooth Muscle Cell Migration 40 4.1 Introduction 41 4.2 Results 43 4.2.1 Effects of CRP2 on cellular adhesion, spreading, and lamellipodia formation 43 4.2.2 CRP2 associates with actin stress fibers in VSMCs 44 4.2.3 Restoring CRP2 expression in Csrp2–/– VSMCs inhibits lamellipodia formation and migration following PDGF-BB stimulation 45 4.2.4 CRP2 interacts with scaffold molecule p130Cas 46 4.2.5 Phospho-p130Cas expression in the normal and injured arterial wall 47 4.2.6 PDGF-BB stimulated Csrp2–/– VSMCs exhibit increased p-p130Cas at the leading edges of lamellipodia 48 4.2.7 CRP2 colocalizes with p-p130Cas at FAs but not at leading edges of lamellipodia in migratory VSMCs 48 4.2.8 The substrate domain of p130Cas is required for CRP2 interaction 50 4.3 Discussion 50 Chapter 5. Conclusions and Perspectives 55 References 58 Tables 70 Table I. Summary of Csrp2-lacZ transgenic mice 70 Figures 71 Figure 1. Csrp2 intron 1 is required for lacZ transgene expression in adult blood vessels 71 Figure 2. SRF binds to CArG1 and CArG2 elements of Csrp2 intron 1 in electrophoretic mobility shift assays 73 Figure 3. SRF preferentially binds to CArG2 element of Csrp2 intron 1 in Chromatin immunoprecipitation assays 74 Figure 4. The first intron of the Csrp2 gene contains SRF/CArG-dependent activity 75 Figure 5. SRF coactivators contribute to Csrp2 expression via intronic sequences in VSMCs 77 Figure 6. Csrp2 intronic CArG are important for transgene expression in adult vessels 79 Figure 7. CArG2 of Csrp2 intron 1 is essential for lacZ transgene expression in adult blood vessels 80 Figure 8. Whole mount -galactosidase staining of major arteries in adult –825Int1-Csrp2-lacZ and CArG mutant transgenic mice from different founder lines 81 Figure 9. CRP2 on VSMC adhesion, spreading, and lamellipodia formation 83 Figure 10. CRP2 is associated with actin stress fibers of vascular smooth muscle cells 85 Figure 11. Re-expression of CRP2 in Csrp2–/– VSMCs inhibits PDGF-BB-induced lamellipodia formation and migration 87 Figure 12. CRP2 interacts with p130Cas by mammalian two-hybrid assays 89 Figure 13. The role of p130Cas in vascular remodeling 91 Figure 14. Suppression of p130Cas expression levels and inhibition of its phosphorylation 92 Figure 15. Subcellular localization of p-p130Cas in non-migrating and migratory Csrp2+/+ and Csrp2–/– VSMCs 93 Figure 16. Colocalization of p-p130Cas and paxillin at focal adhesions in VSMCs 96 Figure 17. CRP2 colocalizes with p-p130Cas at FAs but not leading edge of lamellipodia in VSMCs 97 Figure 18. The substrate domain of p130Cas is required for interaction with CRP2 99

    1. Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 1995;75:487-517.
    2. Hungerford JE, Little CD. Developmental biology of the vascular smooth muscle cell: building a multilayered vessel wall. J Vasc Res 1999;36:2-27.
    3. Parmacek MS. Transcriptional programs regulating vascular smooth muscle cell development and differentiation. Curr Top Dev Biol 2001;51:69-89.
    4. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 2004;84:767-801.
    5. Alexander MR, Owens GK. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol 2012;74:13-40.
    6. Ferns GA, Raines EW, Sprugel KH, Motani AS, Reidy MA, Ross R. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science 1991;253:1129-1132.
    7. Jawien A, Bowen-Pope DF, Lindner V, Schwartz SM, Clowes AW. Platelet-derived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty. J Clin Invest 1992;89:507-511.
    8. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801-809.
    9. Crawford AW, Pino JD, Beckerle MC. Biochemical and molecular characterization of the chicken cysteine-rich protein, a developmentally regulated LIM-domain protein that is associated with the actin cytoskeleton. J Cell Biol 1994;124:117-127.
    10. Sanchez-Garcia I, Rabbitts TH. The LIM domain: a new structural motif found in zinc-finger-like proteins. Trends Genet 1994;10:315-320.
    11. Sadler I, Crawford AW, Michelsen JW, Beckerle MC. Zyxin and cCRP: two interactive LIM domain proteins associated with the cytoskeleton. J Cell Biol 1992;119:1573-1587.
    12. Schmeichel KL, Beckerle MC. The LIM domain is a modular protein-binding interface. Cell 1994;79:211-219.
    13. Dawid IB, Breen JJ, Toyama R. LIM domains: multiple roles as adapters and functional modifiers in protein interactions. Trends Genet 1998;14:156-162.
    14. Kadrmas JL, Beckerle MC. The LIM domain: from the cytoskeleton to the nucleus. Nat Rev Mol Cell Biol 2004;5:920-931.
    15. Way JC, Chalfie M. mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell 1988;54:5-16.
    16. Karlsson O, Thor S, Norberg T, Ohlsson H, Edlund T. Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo- and a Cys-His domain. Nature 1990;344:879-882.
    17. Freyd G, Kim SK, Horvitz HR. Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis elegans cell lineage gene lin-11. Nature 1990;344:876-879.
    18. Jain MK, Fujita KP, Hsieh CM, Endege WO, Sibinga NE, Yet SF et al. Molecular cloning and characterization of SmLIM, a developmentally regulated LIM protein preferentially expressed in aortic smooth muscle cells. J Biol Chem 1996;271:10194-10199.
    19. Gill GN. The enigma of LIM domains. Structure 1995;3:1285-1289.
    20. Mizuno K, Okano I, Ohashi K, Nunoue K, Kuma K, Miyata T et al. Identification of a human cDNA encoding a novel protein kinase with two repeats of the LIM/double zinc finger motif. Oncogene 1994;9:1605-1612.
    21. Nunoue K, Ohashi K, Okano I, Mizuno K. LIMK-1 and LIMK-2, two members of a LIM motif-containing protein kinase family. Oncogene 1995;11:701-710.
    22. Sheng HZ, Zhadanov AB, Mosinger B, Jr., Fujii T, Bertuzzi S, Grinberg A et al. Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science 1996;272:1004-1007.
    23. Frangiskakis JM, Ewart AK, Morris CA, Mervis CB, Bertrand J, Robinson BF et al. LIM-kinase1 hemizygosity implicated in impaired visuospatial constructive cognition. Cell 1996;86:59-69.
    24. Weiskirchen R, Gunther K. The CRP/MLP/TLP family of LIM domain proteins: acting by connecting. Bioessays 2003;25:152-162.
    25. Weiskirchen R, Pino JD, Macalma T, Bister K, Beckerle MC. The cysteine-rich protein family of highly related LIM domain proteins. J Biol Chem 1995;270:28946-28954.
    26. Louis HA, Pino JD, Schmeichel KL, Pomies P, Beckerle MC. Comparison of three members of the cysteine-rich protein family reveals functional conservation and divergent patterns of gene expression. J Biol Chem 1997;272:27484-27491.
    27. Henderson JR, Macalma T, Brown D, Richardson JA, Olson EN, Beckerle MC. The LIM protein, CRP1, is a smooth muscle marker. Dev Dyn 1999;214:229-238.
    28. Weiskirchen R, Bister K. Suppression in transformed avian fibroblasts of a gene (crp) encoding a cysteine-rich protein containing LIM domains. Oncogene 1993;8:2317-2324.
    29. Yet SF, Folta SC, Jain MK, Hsieh CM, Maemura K, Layne MD et al. Molecular cloning, characterization, and promoter analysis of the mouse Crp2/SmLim gene. Preferential expression of its promoter in the vascular smooth muscle cells of transgenic mice. J Biol Chem 1998;273:10530-10537.
    30. Chang YF, Wei J, Liu X, Chen YH, Layne MD, Yet SF. Identification of a CArG-independent region of the cysteine-rich protein 2 promoter that directs expression in the developing vasculature. Am J Physiol Heart Circ Physiol 2003;285:H1675-1683.
    31. Arber S, Halder G, Caroni P. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Cell 1994;79:221-231.
    32. Arber S, Hunter JJ, Ross J, Jr., Hongo M, Sansig G, Borg J et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 1997;88:393-403.
    33. Pomies P, Louis HA, Beckerle MC. CRP1, a LIM domain protein implicated in muscle differentiation, interacts with alpha-actinin. J Cell Biol 1997;139:157-168.
    34. Golsteyn RM, Beckerle MC, Koay T, Friederich E. Structural and functional similarities between the human cytoskeletal protein zyxin and the ActA protein of Listeria monocytogenes. J Cell Sci 1997;110:1893-1906.
    35. Podlubnaya ZA, Tskhovrebova LA, Zaalishtsbvili MM, Stefanenko GA. Electron microscopic study of alpha-actinin. J Mol Biol 1975;92:357-359.
    36. Arber S, Caroni P. Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ. Genes Dev 1996;10:289-300.
    37. Kong Y, Flick MJ, Kudla AJ, Konieczny SF. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol Cell Biol 1997;17:4750-4760.
    38. Chang DF, Belaguli NS, Iyer D, Roberts WB, Wu SP, Dong XR et al. Cysteine-rich LIM-only proteins CRP1 and CRP2 are potent smooth muscle differentiation cofactors. Dev Cell 2003;4:107-118.
    39. Grubinger M, Gimona M. CRP2 is an autonomous actin-binding protein. FEBS Lett 2004;557:88-92.
    40. Kihara T, Shinohara S, Fujikawa R, Sugimoto Y, Murata M, Miyake J. Regulation of cysteine-rich protein 2 localization by the development of actin fibers during smooth muscle cell differentiation. Biochem Biophys Res Commun 2011;411:96-101.
    41. Jain MK, Kashiki S, Hsieh CM, Layne MD, Yet SF, Sibinga NE et al. Embryonic expression suggests an important role for CRP2/SmLIM in the developing cardiovascular system. Circ Res 1998;83:980-985.
    42. Mack CP, Owens GK. Regulation of smooth muscle alpha-actin expression in vivo is dependent on CArG elements within the 5' and first intron promoter regions. Circ Res 1999;84:852-861.
    43. Moessler H, Mericskay M, Li Z, Nagl S, Paulin D, Small JV. The SM 22 promoter directs tissue-specific expression in arterial but not in venous or visceral smooth muscle cells in transgenic mice. Development 1996;122:2415-2425.
    44. Li L, Liu Z, Mercer B, Overbeek P, Olson EN. Evidence for serum response factor-mediated regulatory networks governing SM22alpha transcription in smooth, skeletal, and cardiac muscle cells. Dev Biol 1997;187:311-321.
    45. Chang PS, Li L, McAnally J, Olson EN. Muscle specificity encoded by specific serum response factor-binding sites. J Biol Chem 2001;276:17206-17212.
    46. Strobeck M, Kim S, Zhang JC, Clendenin C, Du KL, Parmacek MS. Binding of serum response factor to CArG box sequences is necessary but not sufficient to restrict gene expression to arterial smooth muscle cells. J Biol Chem 2001;276:16418-16424.
    47. Madsen CS, Hershey JC, Hautmann MB, White SL, Owens GK. Expression of the smooth muscle myosin heavy chain gene is regulated by a negative-acting GC-rich element located between two positive-acting serum response factor-binding elements. J Biol Chem 1997;272:6332-6340.
    48. Manabe I, Owens GK. CArG elements control smooth muscle subtype-specific expression of smooth muscle myosin in vivo. J Clin Invest 2001;107:823-834.
    49. Manabe I, Owens GK. The smooth muscle myosin heavy chain gene exhibits smooth muscle subtype-selective modular regulation in vivo. J Biol Chem 2001;276:39076-39087.
    50. Miano JM, Carlson MJ, Spencer JA, Misra RP. Serum response factor-dependent regulation of the smooth muscle calponin gene. J Biol Chem 2000;275:9814-9822.
    51. Owens GK. Molecular control of vascular smooth muscle cell differentiation. Acta Physiol Scand 1998;164:623-635.
    52. Regan CP, Adam PJ, Madsen CS, Owens GK. Molecular mechanisms of decreased smooth muscle differentiation marker expression after vascular injury. J Clin Invest 2000;106:1139-1147.
    53. Madsen CS, Regan CP, Hungerford JE, White SL, Manabe I, Owens GK. Smooth muscle-specific expression of the smooth muscle myosin heavy chain gene in transgenic mice requires 5'-flanking and first intronic DNA sequence. Circ Res 1998;82:908-917.
    54. Wei J, Gorman TE, Liu X, Ith B, Tseng A, Chen Z et al. Increased neointima formation in cysteine-rich protein 2-deficient mice in response to vascular injury. Circ Res 2005;97:1323-1331.
    55. Kanner SB, Reynolds AB, Wang HC, Vines RR, Parsons JT. The SH2 and SH3 domains of pp60src direct stable association with tyrosine phosphorylated proteins p130 and p110. Embo J 1991;10:1689-1698.
    56. Defilippi P, Di Stefano P, Cabodi S. p130Cas: a versatile scaffold in signaling networks. Trends Cell Biol 2006;16:257-263.
    57. Tikhmyanova N, Little JL, Golemis EA. CAS proteins in normal and pathological cell growth control. Cell Mol Life Sci 2010;67:1025-1048.
    58. Barrett A, Pellet-Many C, Zachary IC, Evans IM, Frankel P. p130Cas: a key signalling node in health and disease. Cell Signal 2013;25:766-777.
    59. Sakai R, Iwamatsu A, Hirano N, Ogawa S, Tanaka T, Mano H et al. A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation-dependent manner. EMBO J 1994;13:3748-3756.
    60. Bouton AH, Riggins RB, Bruce-Staskal PJ. Functions of the adapter protein Cas: signal convergence and the determination of cellular responses. Oncogene 2001;20:6448-6458.
    61. Klemke RL, Leng J, Molander R, Brooks PC, Vuori K, Cheresh DA. CAS/Crk coupling serves as a "molecular switch" for induction of cell migration. J Cell Biol 1998;140:961-972.
    62. Evans IM, Yamaji M, Britton G, Pellet-Many C, Lockie C, Zachary IC et al. Neuropilin-1 signaling through p130Cas tyrosine phosphorylation is essential for growth factor-dependent migration of glioma and endothelial cells. Mol Cell Biol 2011;31:1174-1185.
    63. Burridge K, Fath K, Kelly T, Nuckolls G, Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol 1988;4:487-525.
    64. Zamir E, Katz BZ, Aota S, Yamada KM, Geiger B, Kam Z. Molecular diversity of cell-matrix adhesions. J Cell Sci 1999;112:1655-1669.
    65. Beningo KA, Dembo M, Kaverina I, Small JV, Wang YL. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 2001;153:881-888.
    66. Rivera GM, Antoku S, Gelkop S, Shin NY, Hanks SK, Pawson T et al. Requirement of Nck adaptors for actin dynamics and cell migration stimulated by platelet-derived growth factor B. Proc Natl Acad Sci U S A 2006;103:9536-9541.
    67. Yi J, Kloeker S, Jensen CC, Bockholt S, Honda H, Hirai H et al. Members of the Zyxin family of LIM proteins interact with members of the p130Cas family of signal transducers. J Biol Chem 2002;277:9580-9589.
    68. Pratt SJ, Epple H, Ward M, Feng Y, Braga VM, Longmore GD. The LIM protein Ajuba influences p130Cas localization and Rac1 activity during cell migration. J Cell Biol 2005;168:813-824.
    69. Kiyokawa E, Hashimoto Y, Kurata T, Sugimura H, Matsuda M. Evidence that DOCK180 up-regulates signals from the CrkII-p130(Cas) complex. J Biol Chem 1998;273:24479-24484.
    70. Gumienny TL, Brugnera E, Tosello-Trampont AC, Kinchen JM, Haney LB, Nishiwaki K et al. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 2001;107:27-41.
    71. Brugnera E, Haney L, Grimsley C, Lu M, Walk SF, Tosello-Trampont AC et al. Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat Cell Biol 2002;4:574-582.
    72. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992;70:401-410.
    73. Nobes CD, Hall A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 1999;144:1235-1244.
    74. Honda H, Oda H, Nakamoto T, Honda Z, Sakai R, Suzuki T et al. Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130Cas. Nat Genet 1998;19:361-365.
    75. Tang DD. p130 Crk-associated substrate (CAS) in vascular smooth muscle. J Cardiovasc Pharmacol Ther 2009;14:89-98.
    76. Pellet-Many C, Frankel P, Evans IM, Herzog B, Junemann-Ramirez M, Zachary IC. Neuropilin-1 mediates PDGF stimulation of vascular smooth muscle cell migration and signalling via p130Cas. Biochem J 2011;435:609-618.
    77. Kyaw M, Yoshizumi M, Tsuchiya K, Kagami S, Izawa Y, Fujita Y et al. Src and Cas are essentially but differentially involved in angiotensin II-stimulated migration of vascular smooth muscle cells via extracellular signal-regulated kinase 1/2 and c-Jun NH2-terminal kinase activation. Mol Pharmacol 2004;65:832-841.
    78. Lin Y, Ceacareanu AC, Hassid A. Nitric oxide-induced inhibition of aortic smooth muscle cell motility: role of PTP-PEST and adaptor proteins p130cas and Crk. Am J Physiol Heart Circ Physiol 2003;285:H710-721.
    79. Ceacareanu AC, Ceacareanu B, Zhuang D, Chang Y, Ray RM, Desai L et al. Nitric oxide attenuates IGF-I-induced aortic smooth muscle cell motility by decreasing Rac1 activity: essential role of PTP-PEST and p130cas. Am J Physiol Cell Physiol 2006;290:C1263-1270.
    80. Doran AC, Meller N, McNamara CA. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol 2008;28:812-819.
    81. Lusis AJ. Atherosclerosis. Nature 2000;407:233-241.
    82. Louis SF, Zahradka P. Vascular smooth muscle cell motility: From migration to invasion. Exp Clin Cardiol 2010;15:e75-85.
    83. Disanza A, Steffen A, Hertzog M, Frittoli E, Rottner K, Scita G. Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement. Cell Mol Life Sci 2005;62:955-970.
    84. Yamazaki D, Kurisu S, Takenawa T. Regulation of cancer cell motility through actin reorganization. Cancer Sci 2005;96:379-386.
    85. Ridley AJ. Rho family proteins: coordinating cell responses. Trends Cell Biol 2001;11:471-477.
    86. Sakata Y, Xiang F, Chen Z, Kiriyama Y, Kamei CN, Simon DI et al. Transcription factor CHF1/Hey2 regulates neointimal formation in vivo and vascular smooth muscle proliferation and migration in vitro. Arterioscler Thromb Vasc Biol 2004;24:2069-2074.
    87. Kiyokawa E, Hashimoto Y, Kobayashi S, Sugimura H, Kurata T, Matsuda M. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev 1998;12:3331-3336.
    88. Fire A. Histochemical techniques for locating Escherichia coli beta-galactosidase activity in transgenic organisms. Genet Anal Tech Appl 1992;9:151-158.
    89. Gunther S, Alexander RW, Atkinson WJ, Gimbrone MA, Jr. Functional angiotensin II receptors in cultured vascular smooth muscle cells. J Cell Biol 1982;92:289-298.
    90. Cen B, Selvaraj A, Burgess RC, Hitzler JK, Ma Z, Morris SW et al. Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes. Mol Cell Biol 2003;23:6597-6608.
    91. Soni S, Lin BT, August A, Nicholson RI, Kirsch KH. Expression of a phosphorylated p130(Cas) substrate domain attenuates the phosphatidylinositol 3-kinase/Akt survival pathway in tamoxifen resistant breast cancer cells. J Cell Biochem 2009;107:364-375.
    92. Xu W, Baribault H, Adamson ED. Vinculin knockout results in heart and brain defects during embryonic development. Development 1998;125:327-337.
    93. Kumar A, Lindner V. Remodeling with neointima formation in the mouse carotid artery after cessation of blood flow. Arterioscler Thromb Vasc Biol 1997;17:2238-2244.
    94. Smolock EM, Korshunov VA, Glazko G, Qiu X, Gerloff J, Berk BC. Ribosomal protein L17, RpL17, is an inhibitor of vascular smooth muscle growth and carotid intima formation. Circulation 2012;126:2418-2427.
    95. Qiu W, Cobb RR, Scholz W. Inhibition of p130cas tyrosine phosphorylation by calyculin A. J Leukoc Biol 1998;63:631-635.
    96. Lin DW, Chang IC, Tseng A, Wu ML, Chen CH, Patenaude CA et al. Transforming growth factor beta up-regulates cysteine-rich protein 2 in vascular smooth muscle cells via activating transcription factor 2. J Biol Chem 2008;283:15003-15014.
    97. Okano I, Yamamoto T, Kaji A, Kimura T, Mizuno K, Nakamura T. Cloning of CRP2, a novel member of the cysteine-rich protein family with two repeats of an unusual LIM/double zinc-finger motif. FEBS Lett 1993;333:51-55.
    98. Henderson JR, Brown D, Richardson JA, Olson EN, Beckerle MC. Expression of the gene encoding the LIM protein CRP2: a developmental profile. J Histochem Cytochem 2002;50:107-111.
    99. Yoshida T, Owens GK. Molecular determinants of vascular smooth muscle cell diversity. Circ Res 2005;96:280-291.
    100. Sun Q, Chen G, Streb JW, Long X, Yang Y, Stoeckert CJ, Jr. et al. Defining the mammalian CArGome. Genome Res 2006;16:197-207.
    101. Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E et al. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 2001;105:851-862.
    102. Wang DZ, Li S, Hockemeyer D, Sutherland L, Wang Z, Schratt G et al. Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc Natl Acad Sci U S A 2002;99:14855-14860.
    103. Li S, Wang DZ, Wang Z, Richardson JA, Olson EN. The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proc Natl Acad Sci U S A 2003;100:9366-9370.
    104. Du KL, Chen M, Li J, Lepore JJ, Mericko P, Parmacek MS. Megakaryoblastic leukemia factor-1 transduces cytoskeletal signals and induces smooth muscle cell differentiation from undifferentiated embryonic stem cells. J Biol Chem 2004;279:17578-17586.
    105. Hinson JS, Medlin MD, Lockman K, Taylor JM, Mack CP. Smooth muscle cell-specific transcription is regulated by nuclear localization of the myocardin-related transcription factors. Am J Physiol Heart Circ Physiol 2007;292:H1170-1180.
    106. Chen J, Kitchen CM, Streb JW, Miano JM. Myocardin: a component of a molecular switch for smooth muscle differentiation. J Mol Cell Cardiol 2002;34:1345-1356.
    107. Layne MD, Yet SF, Maemura K, Hsieh CM, Liu X, Ith B et al. Characterization of the mouse aortic carboxypeptidase-like protein promoter reveals activity in differentiated and dedifferentiated vascular smooth muscle cells. Circ Res 2002;90:728-736.
    108. Sayers RL, Sundberg-Smith LJ, Rojas M, Hayasaka H, Parsons JT, Mack CP et al. FRNK expression promotes smooth muscle cell maturation during vascular development and after vascular injury. Arterioscler Thromb Vasc Biol 2008;28:2115-2122.
    109. Schlaeger TM, Bartunkova S, Lawitts JA, Teichmann G, Risau W, Deutsch U et al. Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc Natl Acad Sci U S A 1997;94:3058-3063.
    110. Li L, Miano JM, Mercer B, Olson EN. Expression of the SM22alpha promoter in transgenic mice provides evidence for distinct transcriptional regulatory programs in vascular and visceral smooth muscle cells. J Cell Biol 1996;132:849-859.
    111. Smith AF, Bigsby RM, Word RA, Herring BP. A 310-bp minimal promoter mediates smooth muscle cell-specific expression of telokin. Am J Physiol 1998;274.
    112. Lilly B, Olson EN, Beckerle MC. Identification of a CArG box-dependent enhancer within the cysteine-rich protein 1 gene that directs expression in arterial but not venous or visceral smooth muscle cells. Dev Biol 2001;240:531-547.
    113. Balza RO, Jr., Misra RP. Role of the serum response factor in regulating contractile apparatus gene expression and sarcomeric integrity in cardiomyocytes. J Biol Chem 2006;281:6498-6510.
    114. Sun Q, Taurin S, Sethakorn N, Long X, Imamura M, Wang DZ et al. Myocardin-dependent activation of the CArG box-rich smooth muscle gamma-actin gene: preferential utilization of a single CArG element through functional association with the NKX3.1 homeodomain protein. J Biol Chem 2009;284:32582-32590.
    115. Hendrix JA, Wamhoff BR, McDonald OG, Sinha S, Yoshida T, Owens GK. 5' CArG degeneracy in smooth muscle alpha-actin is required for injury-induced gene suppression in vivo. J Clin Invest 2005;115:418-427.
    116. Wang Z, Wang DZ, Hockemeyer D, McAnally J, Nordheim A, Olson EN. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 2004;428:185-189.
    117. Weiskirchen R, Erdel M, Utermann G, Bister K. Cloning, structural analysis, and chromosomal localization of the human CSRP2 gene encoding the LIM domain protein CRP2. Genomics 1997;44:83-93.
    118. Selvaraj A, Prywes R. Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent. BMC Mol Biol 2004;5:13.
    119. Chen CH, Wu ML, Lee YC, Layne MD, Yet SF. Intronic CArG box regulates cysteine-rich protein 2 expression in the adult but not in developing vasculature. Arterioscler Thromb Vasc Biol 2010;30:835-842.
    120. Zheng Q, Zhao Y. The diverse biofunctions of LIM domain proteins: determined by subcellular localization and protein-protein interaction. Biol Cell 2007;99:489-502.
    121. Small JV, Stradal T, Vignal E, Rottner K. The lamellipodium: where motility begins. Trends Cell Biol 2002;12:112-120.
    122. Fraley SI, Feng Y, Giri A, Longmore GD, Wirtz D. Dimensional and temporal controls of three-dimensional cell migration by zyxin and binding partners. Nat Commun 2012;3:719.
    123. Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 1995;377:539-544.
    124. Shin NY, Dise RS, Schneider-Mergener J, Ritchie MD, Kilkenny DM, Hanks SK. Subsets of the major tyrosine phosphorylation sites in Crk-associated substrate (CAS) are sufficient to promote cell migration. J Biol Chem 2004;279:38331-38337.
    125. Petch LA, Bockholt SM, Bouton A, Parsons JT, Burridge K. Adhesion-induced tyrosine phosphorylation of the p130 src substrate. J Cell Sci 1995;108:1371-1379.
    126. Hoffman LM, Jensen CC, Kloeker S, Wang CL, Yoshigi M, Beckerle MC. Genetic ablation of zyxin causes Mena/VASP mislocalization, increased motility, and deficits in actin remodeling. J Cell Biol 2006;172:771-782.
    127. Vuori K, Ruoslahti E. Tyrosine phosphorylation of p130Cas and cortactin accompanies integrin-mediated cell adhesion to extracellular matrix. J Biol Chem 1995;270:22259-22262.
    128. Nojima Y, Morino N, Mimura T, Hamasaki K, Furuya H, Sakai R et al. Integrin-mediated cell adhesion promotes tyrosine phosphorylation of p130Cas, a Src homology 3-containing molecule having multiple Src homology 2-binding motifs. J Biol Chem 1995;270:15398-15402.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE