簡易檢索 / 詳目顯示

研究生: 吳嘉洲
WU, CHIA-CHOU
論文名稱: 再生與非再生基因調控網路之系統分析及再生醫學上之應用
Systematic Analysis of Regenerative and Non-regenerative Gene Regulatory Networks and Its Applications to Regenerative Medicine Design
指導教授: 陳博現
CHEN, BOR-SEN
口試委員: 鍾鴻源
黃奇英
呂忠津
阮雪芬
林俊良
劉靖家
陳博現
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 151
中文關鍵詞: 基因調控網路再生醫學訊號傳遞系統分析藥物設計
外文關鍵詞: gene regulatory network, regenerative medicine, signal transduction, systematic analysis, drug design
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 再生是一項重要的生物特徵,而受傷部位的再生能力會隨著不同器官、個體、物種而有所差異。目前尚未有一套系統性的理論去解釋各層次間的差異。本研究將在一個基於動態調控數學模型的框架下,對再生與非再生系統進行分析。再生與非再生系統的動態結構可被再生與非再生系統的全基因組基因表現量及多資料庫的候選網路所辨識。換言之,我們利用動態調控模型中的調控參數去刻劃再生與非再生動態基因調控網路的特徵。網路中節點的功能分析發現了在非再生系統中有異常活化的細胞間溝通,這很有可能阻礙再生的進行。而網路的中心節點及其周圍節點標定了兩個系統中不同的基因調控熱區。接著,一個由三個節點所構成的簡單拓樸結構在再生與非再生系統的豐富程度與其結構之特性進一步說明兩個系統間的差異。隨著分析對象逐漸複雜化,我們進一步考慮再生與非再生系統中共同的二十個功能模組。功能模組間的連結強弱揭露了兩個系統在功能層次上的調控差異。此外,整體網路的連結度、群聚度的分布則涉及到兩個系統在演化上的差異。除了系統結構特性的分析外,動態調控模型的引入使我們能根據系統理論提出一個數值,用來評估再生與非再生系統中的子系統對訊號處理的能力。相較於三角結構的豐富程度,三角結構的訊號傳遞能力提供了另一個可區分再生與非再生系統的維度。而基於功能模組間的連結與功能模組的訊號傳遞能力,我們提出了一個具有三層功能組織的再生機制,用來解釋兩個系統在功能層次上調控機制的差異。最後,我們進一步提出一個基於訊號傳遞能力的藥物設計方法。該方法可提供更廣泛的目標選擇、降低個體差異對藥物效果的影響並進一步指出未來再生醫學的發展方向。


    Regeneration is an essential characteristic of biological organisms. The ability to regenerate injured sites is varied across organs, individuals, and species. No systematic theory explains the differences of regenerative capacity at different organizational levels. In this study, we analyzed the regenerative and nonregenerative systems in a unified framework based on a dynamic regulatory model. With the gene expression levels of the regenerative and nonregenerative systems and the multi-database-derived candidate regulations of the genes, system identification techniques are used to identify the dynamic structure of the regenerative and nonregenerative systems. That is, we exploited the regulatory abilities in the dynamic regulatory model to delineate the dynamic regulatory networks of the regenerative and nonregenerative systems. The functional analysis of the nodes in the constructed networks reveals that an excess cell communication in the nonregenerative systems may hinder the regeneration of the injured brain. The hubs and their network neighbors reflect the regulatory hot zone in the regenerative and nonregenerative networks. Next, a subgraph consisting of three connected nodes, called a triad, was considered for further systematic analysis of regenerative and nonregenerative networks. The topological structure of the triads explains the difference between the triad significance profiles of the regenerative and nonregenerative networks. In line with the previous results of the functional analysis, we focused on the functional networks consisting of the 20 common enriched functional modules in the regenerative and nonregenerative systems. The strength in the connectivity of the 20 modules reveals the different regulations of the regenerative and nonregenerative systems at the functional level. Further, the distributions of in-degree, out-degree, and clustering coefficient could implicate the evolutionary difference between the regenerative and nonregenerative systems. The advantage of the dynamic regulatory model to interpret the regenerative and nonregenerative networks motivated us to propose a quantity, called transduction ability, to evaluate the dynamical systematic property of the subsystems in the regenerative and nonregenerative systems. Against to the triad enrichment, the transduction ability of triads provides another dimension for discriminating the regenerative biological systems from nonregenerative ones. A three-level functional organization is proposed to explain the different regulatory mechanisms at the functional level based on the transduction ability and connectivity of the modules. Moreover, based on the regeneration mechanisms by comparing transduction abilities between regenerative and nonregenerative networks, we devised a drug design method to improve their transduction abilities of modules in the nonregenerative systems. The design paradigm based on the transduction ability will provide a wider choice of drug targets, reduce the effect of individual heterogeneity on drug efficacy, and shed light on the future of regenerative medicine from the systems biology perspective.

    Contents 摘要v Abstract vii Acknowledgments ix Contents x List of Figures xiv List of Tables xvi List of Abbreviations/Acronyms xix 1 Introduction 1 1.1 Regeneration process and systems biology . . . . . . . . . . . . . 3 1.2 Systems biology and systematic properties . . . . . . . . . . . . . 8 1.3 Systematic properties and regeneration process . . . . . . . . . . 13 2 Materials and Methods 19 2.1 Time course microarray data of injured organs in zebrafish and rodent models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Zebrafish cerebellum stab lesion model . . . . . . . . . . . 19 2.1.2 Zebrafish ventricular resection model . . . . . . . . . . . . 20 2.1.3 Rat lateral fluid percussion trauma model . . . . . . . . . 21 2.1.4 Mouse controlled cortical impact (CCI) model . . . . . . . 21 2.1.5 Time course microarray data . . . . . . . . . . . . . . . . 22 2.2 Dynamic gene regulatory network (GRN) construction . . . . . . 24 2.2.1 Candidate GRN construction . . . . . . . . . . . . . . . . 24 2.2.2 Dynamic regulatory model and model order detection . . . 26 2.3 Network properties analysis . . . . . . . . . . . . . . . . . . . . . 30 2.3.1 Functional classification . . . . . . . . . . . . . . . . . . . 30 2.3.2 Triad significance profile (TSP) . . . . . . . . . . . . . . . 31 2.3.3 Distributions of degree and clustering coefficient . . . . . . 32 2.3.4 Transduction ability . . . . . . . . . . . . . . . . . . . . . 32 2.4 Transduction ability-based drug design . . . . . . . . . . . . . . . 37 3 Results 41 3.1 GRN overviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Network properties of regenerative and nonregenerative GRNs . . 44 3.2.1 Common and specific nodes and hubs in the regenerative and nonregenerative networks . . . . . . . . . . . . . . . . 44 3.2.2 Triads significance profiles and functional modules of the regenerative and nonregenerative networks . . . . . . . . . 52 3.2.3 Distributions of degrees and clustering coefficients of the regenerative and nonregenerative networks . . . . . . . . . 58 3.3 Transduction ability of regenerative and nonregenerative networks 63 3.3.1 Transduction ability and enrichment of triads . . . . . . . 64 3.3.2 Transduction abilities of functional modules . . . . . . . . 67 3.4 Transduction ability-based drug design . . . . . . . . . . . . . . . 74 4 Discussions 83 4.1 Transduction abilities of the subgraphs in dynamic GRNs . . . . . 83 4.2 Regenerative medicine design paradigm . . . . . . . . . . . . . . . 87 4.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5 Conclusion 91 A Pseudocodes 95 B Tables 97 C Figures 131 Bibliography 137

    [1] Bor-Sen Chen and Chia-Chou Wu. Systems biology : an integrated platform
    for bioinformatics, systems synthetic biology and systems metabolic
    engineering. Systems biology - theory, techniques and applications. Nova
    Publishers, New York, 2014.
    [2] F. S. Collins, E. D. Green, A. E. Guttmacher, and M. S. Guyer. A vision
    for the future of genomics research. Nature, 422(6934):835–847, 2003.
    [3] A. Aderem. Systems biology: Its practice and challenges. Cell, 121(4):
    511–513, 2005.
    [4] Fritjof Capra and P. L. Luisi. The systems view of life : a unifying vision.
    Cambridge University Press, Cambridge, 2014.
    [5] Wikipedia. Mendelian inheritance — wikipedia, the free encyclopedia, 2016.
    [6] C. C. Wu, C. Lin, and B. S. Chen. Dynamic network-based relevance score
    reveals essential proteins and functional modules in directed differentiation.
    Stem Cells International, 2015.
    [7] C. C. Wu and B. S. Chen. A systems biology approach to the coordination
    of defensive and offensive molecular mechanisms in the innate and adaptive
    host–pathogen interaction networks. PLoS One, 11(2):e0149303, 2016.
    [8] Y. H. Wong, C. C. Wu, C. L. Lin, T. S. Chen, T. H. Chang, and B. S. Chen.
    Applying NGS data to find evolutionary network biomarkers from the early
    and late stages of hepatocellular carcinoma. Biomed Research International,
    2015.
    [9] Y. H. Wong, C. C. Wu, H. Y. Lai, R. Jheng, H. Y. Weng, T. H. Chang,
    and B. S. Chen. Identification of network-based biomarkers of cardioembolic
    stroke using a systems biology approach with time series data. BMC Systems
    Biology, 9, 2015.
    [10] C. C. Wu and B. S. Chen. Key immune events of the pathomechanisms
    of early cardioembolic stroke: Multi-database mining and systems biology
    approach. Int J Mol Sci, 17(3), 2016.
    [11] K. D. Poss. Advances in understanding tissue regenerative capacity and
    mechanisms in animals. Nature Reviews Genetics, 11(10):710–722, 2010.
    [12] W. C. Shi, Z. B. Fang, L. Li, and L. F. Luo. Using zebrafish as the model
    organism to understand organ regeneration. Science China-Life Sciences,
    58(4):343–351, 2015.
    [13] C. Jopling, S. Boue, and J. C. I. Belmonte. Dedifferentiation, transdifferentiation
    and reprogramming: three routes to regeneration. Nature Reviews
    Molecular Cell Biology, 12(2):79–89, 2011.
    [14] C. C. Wu, T. H. Tsai, C. Chang, T. T. Lee, C. Lin, I. H. J. Cheng, M. C.
    Sun, Y. J. Chuang, and B. S. Chen. On the crucial cerebellar wound healingrelated
    pathways and their cross-talks after traumatic brain injury in danio
    rerio. PLoS One, 9(6), 2014.
    [15] Christopher L Antos, Franziska Knopf, and Michael Brand. Regeneration
    of Organs and Appendages in Zebrafish: A Window into Underlying Control
    Mechanisms. John Wiley & Sons, Ltd, 2016.
    [16] Z. Q. Lin and W. T. Pu. Strategies for cardiac regeneration and repair.
    Science Translational Medicine, 6(239), 2014.
    [17] J. Romine, X. Gao, and J. H. Chen. Controlled cortical impact model for
    traumatic brain injury. Journal of Visualized Experiments, (90), 2014.
    [18] J. Alder, W. Fujioka, J. Lifshitz, D. P. Crockett, and S. Thakker-Varia.
    Lateral fluid percussion: Model of traumatic brain injury in mice. Journal
    of Visualized Experiments, (54), 2011.
    [19] J. E. Natale, F. Ahmed, I. Cernak, B. Stoica, and A. I. Faden. Gene expression
    profile changes are commonly modulated across models and species
    after traumatic brain injury. Journal of Neurotrauma, 20(10):907–927, 2003.
    [20] K. R. Walker and G. Tesco. Molecular mechanisms of cognitive dysfunction
    following traumatic brain injury. Frontiers in Aging Neuroscience, 5, 2013.
    204qf Times Cited:27 Cited References Count:268.
    [21] G. Karlebach and R. Shamir. Modelling and analysis of gene regulatory
    networks. Nature Reviews Molecular Cell Biology, 9(10):770–780, 2008.
    [22] A. L. Barabasi and Z. N. Oltvai. Network biology: Understanding the cell’s
    functional organization. Nature Reviews Genetics, 5(2):101–U15, 2004.
    [23] J. A. Blake, K. R. Christie, M. E. Dolan, H. J. Drabkin, D. P. Hill, L. Ni,
    D. Sitnikov, S. Burgess, T. Buza, C. Gresham, F. McCarthy, L. Pillai,
    H. Wang, S. Carbon, H. Dietze, S. E. Lewis, C. J. Mungall, M. C. Munoz-
    Torres, M. Feuermann, P. Gaudet, S. Basu, R. L. Chisholm, R. J. Dodson,
    P. Fey, H. Mi, P. D. Thomas, A. Muruganujan, S. Poudel, J. C. Hu,
    S. A. Aleksander, B. K. McIntosh, D. P. Renfro, D. A. Siegele, H. Attrill,
    N. H. Brown, S. Tweedie, J. Lomax, D. Osumi-Sutherland, H. Parkinson,
    P. Roncaglia, R. C. Lovering, P. J. Talmud, S. E. Humphries, P. Denny,
    N. H. Campbell, R. E. Foulger, M. C. Chibucos, M. G. Giglio, H. Y.
    Chang, R. Finn, M. Fraser, A. Mitchell, G. Nuka, S. Pesseat, A. Sangrador,
    M. Scheremetjew, S. Y. Young, R. Stephan, M. A. Harris, S. G. Oliver,
    K. Rutherford, V. Wood, J. Bahler, A. Lock, P. J. Kersey, M. D. McDowall,
    D. M. Staines, M. Dwinell, M. Shimoyama, S. Laulederkind, G. T. Hayman,
    S. J. Wang, V. Petri, P. D’Eustachio, L. Matthews, R. Balakrishnan,
    G. Binkley, J. M. Cherry, M. C. Costanzo, J. Demeter, S. S. Dwight, S. R.
    Engel, B. C. Hitz, D. O. Inglis, P. Lloyd, S. R. Miyasato, K. Paskov, G. Roe,
    M. Simison, R. S. Nash, M. S. Skrzypek, S. Weng, E. D. Wong, T. Z. Berardini,
    D. Li, E. Huala, J. Argasinska, C. Arighi, A. Auchincloss, K. Axelsen,
    et al. Gene Ontology Consortium: going forward. Nucleic Acids Research,
    43(D1):D1049–D1056, 2015.
    [24] Minoru Kanehisa, Yoko Sato, Masayuki Kawashima, Miho Furumichi, and
    Mao Tanabe. KEGG as a reference resource for gene and protein annotation.
    Nucleic Acids Research, 44(D1):D457–D462, 2016.
    [25] D. W. Huang, B. T. Sherman, and R. A. Lempicki. Systematic and integrative
    analysis of large gene lists using DAVID bioinformatics resources.
    Nature Protocols, 4(1):44–57, 2009.
    [26] Huaiyu Mi, Sagar Poudel, Anushya Muruganujan, John T. Casagrande, and
    Paul D. Thomas. PANTHER version 10: expanded protein families and
    functions, and analysis tools. Nucleic Acids Research, 44(D1):D336–D342,
    2016.
    [27] A. Chatr-aryamontri, B. J. Breitkreutz, R. Oughtred, L. Boucher,
    S. Heinicke, D. C. Chen, C. Stark, A. Breitkreutz, N. Kolas, L. O’Donnell,
    T. Reguly, J. Nixon, L. Ramage, A. Winter, A. Sellam, C. Chang,
    J. Hirschman, C. Theesfeld, J. Rust, M. S. Livstone, K. Dolinski, and M. Ty-
    ers. The BioGRID interaction database: 2015 update. Nucleic Acids Research,
    43(D1):D470–D478, 2015.
    [28] D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller, J. Huerta-
    Cepas, M. Simonovic, A. Roth, A. Santos, K. P. Tsafou, M. Kuhn, P. Bork,
    L. J. Jensen, and C. von Mering. STRING v10: protein-protein interaction
    networks, integrated over the tree of life. Nucleic Acids Research,
    43(D1):D447–D452, 2015.
    [29] S. Orchard, M. Ammari, B. Aranda, L. Breuza, L. Briganti, F. Broackes-
    Carter, N. H. Campbell, G. Chavali, C. Chen, N. del Toro, M. Duesbury,
    M. Dumousseau, E. Galeota, U. Hinz, M. Iannuccelli, S. Jagannathan,
    R. Jimenez, J. Khadake, A. Lagreid, L. Licata, R. C. Lovering, B. Meldal,
    A. N. Melidoni, M. Milagros, D. Peluso, L. Perfetto, P. Porras, A. Raghunath,
    S. Ricard-Blum, B. Roechert, A. Stutz, M. Tognolli, K. van Roey,
    G. Cesareni, and H. Hermjakob. The MIntAct project–IntAct as a common
    curation platform for 11 molecular interaction databases. Nucleic Acids
    Research, 42(D1):D358–D363, 2014.
    [30] M. Vidal, M. E. Cusick, and A. L. Barabasi. Interactome networks and
    human disease. Cell, 144(6):986–998, 2011.
    [31] P. Ribeiro and F. Silva. G-Tries: a data structure for storing and finding
    subgraphs. Data Mining and Knowledge Discovery, 28(2):337–377, 2014.
    [32] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the
    transcriptional regulation network of escherichia coli. Nature Genetics, 31(1):
    64–68, 2002.
    [33] J. J. Tyson, K. C. Chen, and B. Novak. Sniffers, buzzers, toggles and
    blinkers: dynamics of regulatory and signaling pathways in the cell. Current
    Opinion in Cell Biology, 15(2):221–231, 2003.
    [34] B. Novak and J. J. Tyson. Design principles of biochemical oscillators.
    Nature Reviews Molecular Cell Biology, 9(12):981–991, 2008.
    [35] A. B. Stergachis, S. Neph, R. Sandstrom, E. Haugen, A. P. Reynolds, M. H.
    Zhang, R. Byron, T. Canfield, S. Stelhing-Sun, K. Lee, R. E. Thurman,
    S. Vong, D. Bates, F. Neri, M. Diegel, E. Giste, D. Dunn, J. Vierstra, R. S.
    Hansen, A. K. Johnson, P. J. Sabo, M. S. Wilken, T. A. Reh, P. M. Treuting,
    R. Kaul, M. Groudine, M. A. Bender, E. Borenstein, and J. A. Stamatoyannopoulos.
    Conservation of trans-acting circuitry during mammalian
    regulatory evolution. Nature, 515(7527):365–+, 2014.
    [36] Liang-Hui Chu and Bor-Sen Chen. Comparisons of robustness and sensitivity
    between cancer and normal cells by microarray data. Cancer Informatics,
    6:165–181, 2008.
    [37] B. S. Chen and P. W. Chen. On the estimation of robustness and filtering
    ability of dynamic biochemical networks under process delays, internal parametric
    perturbations and external disturbances. Mathematical Biosciences,
    222(2):92–108, 2009.
    [38] B. S. Chen, Y. T. Chang, and Y. C. Wang. Robust H1-stabilization design
    in gene networks under stochastic molecular noises: Fuzzy-interpolation
    approach. IEEE Transactions on Systems Man and Cybernetics Part BCybernetics,
    38(1):25–42, 2008.
    [39] C. T. Tu and B. S. Chen. New measurement methods of network robustness
    and response ability via microarray data. PLoS One, 8(1), 2013.
    [40] B. S. Chen and Y. P. Lin. On the interplay between the evolvability and
    network robustness in an evolutionary biological network: a systems biology
    approach. Evolutionary Bioinformatics, 7:201–233, 2011.
    [41] Charles Kadushin. Understanding social networks : theories, concepts, and
    findings. Oxford University Press, New York, 2012.
    [42] J. Lamb, E. D. Crawford, D. Peck, J. W. Modell, I. C. Blat, M. J. Wrobel,
    J. Lerner, J. P. Brunet, A. Subramanian, K. N. Ross, M. Reich, H. Hieronymus,
    G. Wei, S. A. Armstrong, S. J. Haggarty, P. A. Clemons, R. Wei,
    S. A. Carr, E. S. Lander, and T. R. Golub. The connectivity map: Using
    gene-expression signatures to connect small molecules, genes, and disease.
    Science, 313(5795):1929–1935, 2006.
    [43] K. D. Poss, L. G. Wilson, and M. T. Keating. Heart regeneration in zebrafish.
    Science, 298(5601):2188–2190, 2002.
    [44] G. Y. Zheng, K. Tu, Q. Yang, Y. Xiong, C. C. Wei, L. Xie, Y. Y. Zhu, and
    Y. X. Li. ITFP: an integrated platform of mammalian transcription factors.
    Bioinformatics, 24(20):2416–2417, 2008.
    [45] C. Jiang, Z. Xuan, F. Zhao, and M. Q. Zhang. TRED: a transcriptional
    regulatory element database, new entries and other development. Nucleic
    Acids Research, 35:D137–D140, 2007.
    [46] J. Wang, J. L. Zhuang, S. Iyer, X. Y. Lin, M. C. Greven, B. H. Kim,
    J. Moore, B. G. Pierce, X. J. Dong, D. Virgil, E. Birney, J. H. Hung,
    and Z. P. Weng. Factorbook.org: a Wiki-based database for transcription
    factor-binding data generated by the ENCODE consortium. Nucleic Acids
    Research, 41(D1):D171–D176, 2013.
    [47] S. Neph, A. B. Stergachis, A. Reynolds, R. Sandstrom, E. Borenstein, and
    J. A. Stamatoyannopoulos. Circuitry and dynamics of human transcription
    factor regulatory networks. Cell, 150(6):1274–1286, 2012.
    [48] J. Sprague, L. Bayraktaroglu, D. Clements, T. Conlin, D. Fashena,
    K. Frazer, M. Haendel, D. G. Howe, P. Mani, S. Ramachandran, K. Schaper,
    E. Segerdell, P. Song, B. Sprunger, S. Taylor, C. E. Van Slyke, and M. Westerfield.
    The Zebrafish Information Network: the zebrafish model organism
    database. Nucleic Acids Research, 34:D581–D585, 2006.
    [49] J. T. Eppig, J. A. Blake, C. J. Bult, J. A. Kadin, J. E. Richardson, and
    Mouse Genome Database Grp. The Mouse Genome Database (MGD): facilitating
    mouse as a model for human biology and disease. Nucleic Acids
    Research, 43(D1):D726–D736, 2015.
    [50] M. Shimoyama, J. De Pons, G. T. Hayman, S. J. F. Laulederkind, W. S.
    Liu, R. Nigam, V. Petri, J. R. Smith, M. Tutaj, S. J. Wang, E. Worthey,
    M. Dwinell, and H. Jacob. The Rat Genome Database 2015: genomic, phenotypic
    and environmental variations and disease. Nucleic Acids Research,
    43(D1):D743–D750, 2015.
    [51] Rolf Johansson. System modeling and identification. Prentice Hall information
    and system sciences series. Prentice Hall, Englewood Cliffs, NJ, 1993.
    [52] C. Vogel and E. M. Marcotte. Insights into the regulation of protein abundance
    from proteomic and transcriptomic analyses. Nature Reviews Genetics,
    13(4):227–232, 2012.
    [53] M. S. Cline, M. Smoot, E. Cerami, A. Kuchinsky, N. Landys, C. Workman,
    R. Christmas, I. Avila-Campilo, M. Creech, B. Gross, K. Hanspers,
    R. Isserlin, R. Kelley, S. Killcoyne, S. Lotia, S. Maere, J. Morris, K. Ono,
    V. Pavlovic, A. R. Pico, A. Vailaya, P. L. Wang, A. Adler, B. R. Conklin,
    L. Hood, M. Kuiper, C. Sander, I. Schmulevich, B. Schwikowski, G. J.
    Warner, T. Ideker, and G. D. Bader. Integration of biological networks and
    gene expression data using Cytoscape. Nature Protocols, 2(10):2366–2382,
    2007.
    [54] N. T. Doncheva, Y. Assenov, F. S. Domingues, and M. Albrecht. Topological
    analysis and interactive visualization of biological networks and protein
    structures. Nature Protocols, 7(4):670–685, 2012.
    [55] B. S. Chen and C. C. Wu. On the calculation of signal transduction ability of
    signaling transduction pathways in intracellular communication: systematic
    approach. Bioinformatics, 28(12):1604–1611, 2012.
    [56] A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert,
    M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and
    J. P. Mesirov. Gene set enrichment analysis: A knowledge-based approach
    for interpreting genome-wide expression profiles. Proceedings of the National
    Academy of Sciences of the United States of America, 102(43):15545–15550,
    2005.
    [57] C. Stark, B. J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and
    M. Tyers. BioGRID: a general repository for interaction datasets. Nucleic
    Acids Research, 34:D535–D539, 2006.
    [58] J. Wang, J. L. Zhuang, S. Iyer, X. Y. Lin, T. W. Whitfield, M. C. Greven,
    B. G. Pierce, X. J. Dong, A. Kundaje, Y. Cheng, O. J. Rando, E. Birney,
    R. M. Myers, W. S. Noble, M. Snyder, and Z. P. Weng. Sequence features
    and chromatin structure around the genomic regions bound by 119 human
    transcription factors. Genome Research, 22(9):1798–1812, 2012.
    [59] Y. C. Wang and B. S. Chen. Integrated cellular network of transcription
    regulations and protein–protein interactions. BMC Systems Biology, 4, 2010.
    [60] M. Prins, T. Greco, D. Alexander, and C. C. Giza. The pathophysiology
    of traumatic brain injury at a glance. Disease Models & Mechanisms, 6(6):
    1307–1315, 2013.
    [61] J. Lee, B. K. Lee, and J. M. Gross. Bcl6a function is required during optic
    cup formation to prevent p53-dependent apoptosis and colobomata. Human
    Molecular Genetics, 22(17):3568–3582, 2013.
    [62] L. V. T. Garner, D. R. Brown, and R. T. Di Giulio. Knockdown of AHR1A
    but not AHR1B exacerbates PAH and PCB-126 toxicity in zebrafish (Danio
    rerio) embryos. Aquatic Toxicology, 142:336–346, 2013.
    [63] W. L. Zheng, Z. Y. Wang, J. E. Collins, R. M. Andrews, D. Stemple, and
    Z. Y. Gong. Comparative transcriptome analyses indicate molecular homology
    of zebrafish swimbladder and mammalian lung. PLoS One, 6(8),
    2011.
    [64] A. Casari, M. Schiavone, N. Facchinello, A. Vettori, D. Meyer, N. Tiso,
    E. Moro, and F. Argenton. A Smad3 transgenic reporter reveals TGF
    control of zebrafish spinal cord development. Developmental Biology, 396(1):
    81–93, 2014.
    [65] A. J. Ablooglu, J. Kang, R. I. Handin, D. Traver, and S. J. Shattil. The
    zelbirafish vitronectin receptor: Characterization of integrin
    v and 3 expression patterns in early vertebrate development. Developmental Dynamics, 236(8):2268–2276, 2007.
    [66] A. Askary, L. Mork, S. Pau, X. He, A. K. Izuhara, S. Gopalakrishnan, J. K.
    Ichida, A. P. McMahon, S. Dabizljevic, R. Dale, F. V. Mariani, and J. G.
    Crump. Iroquois proteins promote skeletal joint formation by maintaining
    chondrocytes in an immature state. Developmental Cell, 35(3):358–365,
    2015.
    [67] F. L. Yeh, L. Y. Hsu, B. A. Lin, C. F. Chen, I. C. Li, S. H. Tsai, and T. Hsu.
    Cloning of zebrafish (Danio rerio) heat shock factor 2 (HSF2) and similar
    patterns of HSF2 and HSF1 mRNA expression in brain tissues. Biochimie,
    88(12):1983–1988, 2006.
    [68] P. Sgado, E. Ferretti, D. Grbec, Y. Bozzi, and H. H. Simon. The atypical
    homeoprotein Pbx1a participates in the axonal pathfinding of mesencephalic
    dopaminergic neurons. Neural Development, 7, 2012.
    [69] J. S. Waxman and D. Yelon. Comparison of the expression patterns of newly
    identified zebrafish retinoic acid and retinoid X receptors. Developmental
    Dynamics, 236(2):587–595, 2007.
    [70] S. K. Choe, M. Nakamura, F. Ladam, L. Etheridge, and C. G. Sagerstrom.
    A Gal4/UAS system for conditional transgene expression in rhombomere
    4 of the zebrafish hindbrain. Developmental Dynamics, 241(6):1125–1132,
    2012.
    [71] P. Hofsteen, J. Plavicki, S. D. Johnson, R. E. Peterson, and W. Heideman.
    Sox9b is required for epicardium formation and plays a role in TCDDinduced
    heart malformation in zebrafish. Molecular Pharmacology, 84(3):
    353–360, 2013.
    [72] F. Liu, D. F. Li, Y. Y. L. Yu, I. Kang, M. J. Cha, J. Y. Kim, C. Park, D. K.
    Watson, T. Wang, and K. Choi. Induction of hematopoietic and endothelial
    cell program orchestrated by ETS transcription factor ER71/ETV2. Embo
    Reports, 16(5):654–669, 2015.
    [73] M. Matus, J. Schulte, H. Sur, M. Seidl, G. Schutz, W. Schmitz, and F. U.
    Muller. Knockout of ATF1 leads to enhanced cardiac contractility and output.
    Faseb Journal, 22, 2008.
    [74] I. P. Moskowitz, J. Wang, M. A. Peterson, W. T. Pu, A. C. Mackinnon,
    L. Oxburgh, G. C. Chu, M. Sarkar, C. Berul, L. Smoot, E. J. Robertson,
    R. Schwartz, J. G. Seidman, and C. E. Seidman. Cardiac-specific transcription
    factor genes Smad4 and Gata4 cooperatively regulate cardiac valve development.
    Proceedings of the National Academy of Sciences of the United
    States of America, 108(10):4006–4011, 2011.
    [75] P. Bostrom, N. Mann, J. Wu, P. A. Quintero, E. R. Plovie, D. Panakova,
    R. K. Gupta, C. Y. Xiao, C. A. MacRae, A. Rosenzweig, and B. M. Spiegelman.
    C/EBP controls exercise-induced cardiac growth and protects against
    pathological cardiac remodeling. Cell, 143(7):1072–1083, 2010.
    [76] M. L. Ratliff, M. Mishra, M. B. Frank, J. M. Guthridge, and C. F. Webb.
    The transcription factor ARID3a is important for in vitro differentiation of
    human hematopoietic progenitors. Journal of Immunology, 196(2):614–623,
    2016.
    [77] Wenqiao Zang, Tao Wang, Yuanyuan Wang, Xiaonan Chen, Yuwen Du,
    Qianqian Sun, Min Li, Ziming Dong, and Guoqiang Zhao. Knockdown of
    long non-coding rna tp73-as1 inhibits cell proliferation and induces apoptosis
    in esophageal squamous cell carcinoma. Oncotarget, 5(0), 2016.
    [78] Y. H. Chen, Y. F. Lu, T. Y. Ko, M. Y. Tsai, C. Y. Lin, C. C. Lin, and
    S. P. L. Hwang. Zebrafish cdx1b regulates differentiation of various intestinal
    cell lineages. Developmental Dynamics, 238(5):1021–1032, 2009.
    [79] Y. C. Lin, D. Z. Xu, X. H. Li, C. Liu, X. Liu, S. Huang, Y. W. Huang, and
    X. J. Liu. Upregulation of interferon regulatory factor 6 promotes neuronal
    apoptosis after traumatic brain injury in adult rats. Cellular and Molecular
    Neurobiology, 36(1):27–36, 2016.
    [80] D. S. Castro, B. Martynoga, C. Parras, V. Ramesh, E. Pacary, C. Johnston,
    D. Drechsel, M. Lebel-Potter, L. G. Garcia, C. Hunt, D. Dolle, A. Bithell,
    L. Ettwiller, N. Buckley, and F. Guillemot. A novel function of the proneural
    factor Ascl1 in progenitor proliferation identified by genome-wide characterization
    of its targets. Genes & Development, 25(9):930–945, 2011.
    [81] V. Donega, C. H. Nijboer, L. Braccioli, I. Slaper-Cortenbach, A. Kavelaars,
    F. van Bel, and C. J. Heijnen. Intranasal administration of human MSC for
    ischemic brain injury in the mouse: In vitro and in vivo neuroregenerative
    functions. PLoS One, 9(11), 2014.
    [82] T. Oosterveen, K. Niederreither, P. Dolle, P. Chambon, F. Meijlink, and
    J. Deschamps. Retinoids regulate the anterior expression boundaries of 5’
    Hoxb genes in posterior hindbrain. Embo Journal, 22(2):262–269, 2003.
    [83] H. H. Xue, X. F. Jing, J. Bollenbacher-Reilley, D. M. Zhao, J. S. Haring,
    B. L. Yang, C. Y. Liu, G. A. Bishop, J. T. Harty, and W. J. Leonard.
    Targeting the GA binding protein
    1L isoform does not perturb lymphocyte
    development and function. Molecular and Cellular Biology, 28(13):4300–
    4309, 2008.
    [84] R. Khorooshi and T. Owens. Injury-induced type i IFN signaling regulates
    inflammatory responses in the central nervous system. Journal of Immunology,
    185(2):1258–1264, 2010.
    [85] A. Juknat, M. Pietr, E. Kozela, N. Rimmerman, R. Levy, F. Y. Gao, G. Coppola,
    D. Geschwind, and Z. Vogel. Microarray and pathway analysis reveal
    distinct mechanisms underlying cannabinoid-mediated modulation of lpsinduced
    activation of bv-2 microglial cells. PLoS One, 8(4), 2013.
    [86] B. Herberth, K. Minko, A. Csillag, T. Jaffredo, and E. Madarasz. SCL,
    GATA-2 and Lmo2 expression in neurogenesis. International Journal of
    Developmental Neuroscience, 23(5):449–463, 2005.
    [87] S. Kachgal, K. A. Mace, and N. J. Boudreau. The dual roles of homeobox
    genes in vascularization and wound healing. Cell Adhesion & Migration,
    6(6):457–470, 2012.
    [88] G. Ghiselli. SMC3 knockdown triggers genomic instability and p53-
    dependent apoptosis in human and zebrafish cells. Molecular Cancer, 5,
    2006.
    [89] C. W. M. Roberts and J. A. Biegel. The role of SMARCB1/INI1 in development
    of rhabdoid tumor. Cancer Biology & Therapy, 8(5):412–416,
    2009.
    [90] W. Jin, H. D. Wang, W. Yan, L. Zhu, Z. G. Hu, Y. S. Ding, and K. Tang.
    Role of Nrf2 in protection against traumatic brain injury in mice. Journal
    of Neurotrauma, 26(1):131–139, 2009.
    [91] Giles E. Hardingham and Kim Q. Do. Linking early-life NMDAR hypofunction
    and oxidative stress in schizophrenia pathogenesis. Nat Rev Neurosci,
    17(2):125–134, 2016.
    [92] A. F. Logsdon, R. C. Turner, B. P. Lucke-Wold, M. J. Robson, Z. J. Naser,
    K. E. Smith, R. R. Matsumoto, J. D. Huber, and C. L. Rosen. Altering endoplasmic
    reticulum stress in a model of blast-induced traumatic brain injury
    controls cellular fate and ameliorates neuropsychiatric symptoms. Frontiers
    in Cellular Neuroscience, 8, 2014.
    [93] S. Chip, X. Z. Zhu, and J. P. Kapfhammer. The analysis of neurovascular
    remodeling in entorhino-hippocampal organotypic slice cultures. Journal of
    Visualized Experiments, (92), 2014.
    [94] K. P. Ng, Z. Hu, Q. Ebrahem, S. Negrotto, J. Lausen, and Y. Saunthararajah.
    Runx1 deficiency permits granulocyte lineage commitment but impairs
    subsequent maturation. Oncogenesis, 2, 2013.
    [95] G. Duester. Retinoid signaling in control of progenitor cell differentiation
    during mouse development. Seminars in Cell & Developmental Biology,
    24(10-12):694–700, 2013.
    [96] M. Davenne, M. K. Maconochie, R. Neun, A. Pattyn, P. Chambon,
    R. Krumlauf, and F. M. Rijli. Hoxa2 and Hoxb2 control dorsoventral patterns
    of neuronal development in the rostral hindbrain. Neuron, 22(4):677–
    691, 1999.
    [97] M. Y. Liu, E. A. Oyarzabal, R. Yang, S. J. Murphy, and P. D. Hurn. A novel
    method for assessing sex-specific and genotype-specific response to injury in
    astrocyte culture. Journal of Neuroscience Methods, 171(2):214–217, 2008.
    [98] G. Chen, T. R. Korfhagen, C. L. Karp, S. Impey, Y. Xu, S. H. Randell,
    J. Kitzmiller, Y. Maeda, H. M. Haitchi, A. Sridharan, A. P. Senft, and J. A.
    Whitsett. Foxa3 induces goblet cell metaplasia and inhibits innate antiviral
    immunity. American Journal of Respiratory and Critical Care Medicine,
    189(3):301–313, 2014.
    [99] D. Shizuka and D. B. McDonald. The network motif architecture of dominance
    hierarchies. Journal of the Royal Society Interface, 12(105), 2015.
    [100] C. Christensen, A. Gupta, C. D. Maranas, and R. Albert. Large-scale inference
    and graph-theoretical analysis of gene-regulatory networks in b-subtilis.
    Physica a-Statistical Mechanics and Its Applications, 373:796–810, 2007.
    [101] Levandow.M and D. Winter. Distance between sets. Nature, 234(5323):
    34–&, 1971.
    [102] G. D’Uva, A. Aharonov, M. Lauriola, D. Kain, Y. Yahalom-Ronen, S. Carvalho,
    K. Weisinger, E. Bassat, D. Rajchman, O. Yifa, M. Lysenko, T. Konfino,
    J. Hegesh, O. Brenner, M. Neeman, Y. Yarden, J. Leor, R. Sarig, R. P.
    Harvey, and E. Tzahor. ERBB2 triggers mammalian heart regeneration by
    promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol,
    17(5):627–38, 2015.
    [103] R. N. Dickerson, S. L. Pitts, G. O. Maish, T. J. Schroeppel, L. J. Magnotti,
    M. A. Croce, G. Minard, and R. O. Brown. A reappraisal of nitrogen requirements
    for patients with critical illness and trauma. Journal of Trauma
    and Acute Care Surgery, 73(3):549–557, 2012.
    [104] S. Jivnani, S. Iyer, K. Umakumar, and M. A. Gore. Impact of enteral
    nutrition on nitrogen balance in patients of trauma. J Emerg Trauma Shock,
    3(2):109–14, 2010.
    [105] N. Kyritsis, C. Kizil, S. Zocher, V. Kroehne, J. Kaslin, D. Freudenreich,
    A. Iltzsche, and M. Brand. Acute inflammation initiates the regenerative
    response in the adult zebrafish brain. Science, 338(6112):1353–1356, 2012.
    [106] A. F. Hallbergson, C. Gnatenco, and D. A. Peterson. Neurogenesis and brain
    injury: managing a renewable resource for repair. J Clin Invest, 112(8):
    1128–33, 2003.
    [107] B. A. Stoica and A. I. Faden. Cell death mechanisms and modulation in
    traumatic brain injury. Neurotherapeutics, 7(1):3–12, 2010.
    [108] A. Rodriguez-Rodriguez, J. J. Egea-Guerrero, F. Murillo-Cabezas, and
    A. Carrillo-Vico. Oxidative stress in traumatic brain injury. Current Medicinal
    Chemistry, 21(10):1201–1211, 2014.
    [109] N. Foley, S. Marshall, J. Pikul, K. Salter, and R. Teasell. Hypermetabolism
    following moderate to severe traumatic acute brain injury: A systematic
    review. Journal of Neurotrauma, 25(12):1415–1431, 2008.
    [110] P. J. Horner and F. H. Gage. Regenerating the damaged central nervous
    system. Nature, 407(6807):963–970, 2000.
    [111] I. Morioka, S. Tsuneishi, S. Takada, and M. Matsuo. PDGF-
    receptor
    expression following hypoxic-ischemic injury in the neonatal rat brain. Kobe
    J Med Sci, 50(1-2):21–30, 2004.
    [112] K. Arimura, T. Ago, M. Kamouchi, K. Nakamura, K. Ishitsuka, J. Kuroda,
    H. Sugimori, H. Ooboshi, T. Sasaki, and T. Kitazono. PDGF receptor  
    signaling in pericytes following ischemic brain injury. Current Neurovascular
    Research, 9(1):1–9, 2012.
    [113] G. Paul, O. Zachrisson, A. Varrone, P. Almqvist, M. Jerling, G. Lind,
    S. Rehncrona, B. Linderoth, H. Bjartmarz, L. L. Shafer, R. Coffey, M. Svensson,
    K. J. Mercer, A. Forsberg, C. Halldin, P. Svenningsson, H. Widner,
    J. Frisen, S. Palhagen, and A. Haegerstrand. Safety and tolerability of intracerebroventricular
    PDGF-BB in Parkinson’s disease patients. Journal of
    Clinical Investigation, 125(3):1339–1346, 2015.
    [114] B. Deplancke, A. Mukhopadhyay, W. Y. Ao, A. M. Elewa, C. A. Grove, N. J.
    Martinez, R. Sequerra, L. Doucette-Stamm, J. S. Reece-Hoyes, I. A. Hope,
    H. A. Tissenbaum, S. E. Mango, and A. J. M. Walhout. A gene-centered C.
    elegans protein–DNA interaction network. Cell, 125(6):1193–1205, 2006.
    [115] S. Mangan and U. Alon. Structure and function of the feed-forward loop
    network motif. Proceedings of the National Academy of Sciences of the United
    States of America, 100(21):11980–11985, 2003.
    [116] M. Bondanelli, M. R. Ambrosio, M. C. Zatelli, L. De Marinis, and E. degli
    Uberti. Hypopituitarism after traumatic brain injury. European Journal of
    Endocrinology, 152(5):679–691, 2005.
    [117] S. N. Khadr, P. M. Crofton, P. A. Jones, B. Wardhaugh, J. Roach, A. J.
    Drake, R. A. Minns, and C. J. H. Kelnar. Evaluation of pituitary function
    after traumatic brain injury in childhood. Clinical Endocrinology, 73(5):
    637–644, 2010.
    [118] A. M. de la Mano, S. Sevillano, M. A. Manso, M. Perez, and I. de Dios.
    Cholecystokinin blockade alters the systemic immune response in rats with
    acute pancreatitis. International Journal of Experimental Pathology, 85(2):
    75–84, 2004.
    [119] Y. Liu, Y. L. Zhang, Z. H. Gu, L. N. Hao, J. Du, Q. Yang, S. P. Li, L. Y.
    Wang, and S. L. Gong. Cholecystokinin octapeptide antagonizes apoptosis
    in human retinal pigment epithelial cells. Neural Regeneration Research,
    9(14):1402–1408, 2014.
    [120] W. P. Chen, Y. H. Liu, Y. J. Ho, and S. M. Wu. Pharmacological inhibition
    of TGF
    receptor improves Nkx2.5 cardiomyoblast-mediated regeneration.
    Cardiovascular Research, 105(1):44–54, 2015.
    [121] T. J. Yuen, K. R. Johnson, V. E. Miron, C. Zhao, J. Quandt, M. C. Harrisingh,
    M. Swire, A. Williams, H. F. McFarland, R. J. M. Franklin, and
    C. Ffrench-Constant. Identification of endothelin 2 as an inflammatory factor
    that promotes central nervous system remyelination. Brain, 136:1035–
    1047, 2013.
    [122] M. Kamber, V. Papalazarou, G. Rouni, E. Papageorgopoulou, A. Papalois,
    and V. Kostourou. Angiotensin II inhibitor facilitates epidermal wound
    regeneration in diabetic mice. Frontiers in Physiology, 6, 2015.
    [123] J. G. Shea, R. W. Alman, and J. F. Fazekas. The use of chlorpromazine in
    the management of patients with head injury. Archives of Internal Medicine,
    96(2):168–171, 1955.
    [124] B. Fogal, C. McClaskey, S. Yan, H. L. Yan, and S. A. Rivkees. Diazoxide
    promotes oligodendrocyte precursor cell proliferation and myelination. PLoS
    One, 5(5), 2010.
    [125] Wikipedia. Carbamazepine — wikipedia, the free encyclopedia, 2016.
    [126] Wikipedia. Ciclosporin — wikipedia, the free encyclopedia, 2016.
    [127] P. G. Sullivan, A. H. Sebastian, and E. D. Hall. Therapeutic window analysis
    of the neuroprotective effects of cyclosporine A after traumatic brain injury.
    Journal of Neurotrauma, 28(2):311–318, 2011.
    [128] D. N. Meli, R. S. Coimbra, D. G. Erhart, G. Loquet, C. L. Bellac, M. G.
    Tauber, U. Neumann, and S. L. Leib. Doxycycline reduces mortality and
    injury to the brain and cochlea in experimental pneumococcal meningitis.
    Infection and Immunity, 74(7):3890–3896, 2006.
    [129] M. Wideroe, M. B. Havnes, T. S. Morken, J. Skranes, P. E. Goa, and A. M.
    Brubakk. Doxycycline treatment in a neonatal rat model of hypoxia-ischemia
    reduces cerebral tissue and white matter injury: a longitudinal magnetic
    resonance imaging study. European Journal of Neuroscience, 36(1):2006–
    2016, 2012.
    [130] A. Shakhbazau, C. Mohanty, D. Shcharbin, M. Bryszewska, A. M. Caminade,
    J. P. Majoral, J. Alant, and R. Midha. Doxycycline-regulated gdnf expression
    promotes axonal regeneration and functional recovery in transected
    peripheral nerve. Journal of Controlled Release, 172(3):841–851, 2013.
    [131] E. Sauter, J. A. Buckwalter, T. O. McKinley, and J. A. Martin. Cytoskeletal
    dissolution blocks oxidant release and cell death in injured cartilage. Journal
    of Orthopaedic Research, 30(4):593–598, 2012.
    [132] J. A. Chuckowree and J. C. Vickers. Cytoskeletal and morphological alterations
    underlying axonal sprouting after localized transection of cortical
    neuron axons in vitro. Journal of Neuroscience, 23(9):3715–3725, 2003.
    [133] R. O. S. Mejia, V. O. Ona, M. W. Li, and R. M. Friedlander. Minocycline reduces
    traumatic brain injury-mediated caspase-1 activation, tissue damage,
    and neurological dysfunction. Neurosurgery, 48(6):1393–1399, 2001.
    [134] Wikipedia. Clotrimazole — wikipedia, the free encyclopedia, 2016.
    [135] S. Lucas, B. M. Smith, N. Temkin, K. R. Bell, S. Dikmen, and J. M. Hoffman.
    Comorbidity of headache and depression after mild traumatic brain injury.
    Headache, 56(2):323–30, 2016.
    [136] B. S. Chen and P. W. Chen. Robust engineered circuit design principles
    for stochastic biochemical networks with parameter uncertainties and disturbances.
    IEEE Transactions on Biomedical Circuits and Systems, 2(2):
    114–132, 2008.
    [137] P. D. Zamore, T. Tuschl, P. A. Sharp, and D. P. Bartel. Rnai: Doublestranded
    rna directs the atp-dependent cleavage of mrna at 21 to 23 nucleotide
    intervals. Cell, 101(1):25–33, 2000.
    [138] L. Cong, F. A. Ran, D. Cox, S. L. Lin, R. Barretto, N. Habib, P. D. Hsu,
    X. B. Wu, W. Y. Jiang, L. A. Marraffini, and F. Zhang. Multiplex genome
    engineering using CRISPR/Cas systems. Science, 339(6121):819–823, 2013.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE