研究生: |
林樹森 |
---|---|
論文名稱: |
應用於先進互補式金氧半之新式感光二極體之研究 |
指導教授: |
金雅琴
|
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
中文關鍵詞: | 感光二極體 |
外文關鍵詞: | Photodiode, dark current |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要是研究在不變更互補式金氧半製程情況下,設計新式感光二極體結構,以降低互補式金氧半影像感測器的暗電流及改善因金屬矽化物製程造成靈敏度下降的情況。
由於傳統感光二極體結構的暗電流成分是以表面態漏電流為主,因此我們設計了多晶矽保護圈以較佳品質的閘極氧化層代替場氧化層期藉由改善表面態以降低暗電流,並且在多晶矽保護圈加上不同偏壓以降低周邊電場,觀察保護圈上電壓對暗電流的影響。
從實驗的結果發現,在多晶矽保護圈上的電壓增加時感光二極體的暗電流隨著多晶矽保護圈電壓而有降低的趨勢。這是由於周邊電場因多晶矽保護圈電壓增加而降低,使得空乏區TAT效應降低緣故。在CMOS元件持續縮小時,元件PN接面電場因參雜濃度增加而增加,TAT效應將更趨明顯。
在0.35μm以下之互補式金氧半製程,為了降低電路電阻與時間常數所使用特殊金屬會與矽反應形成阻擋入射光的金屬矽化物,因此降低了影像感測器的靈敏度。由於特殊金屬並不會與二氧化矽反應形成矽化物,利用多晶矽閘體所形成的間壁氧化物形成讓光入射的窗戶,以增加元件對光的靈敏度。
在實驗的測試元件中發現,利用側壁氧化層去除金屬矽化物方式可有效增加感光二極體靈敏度。若能增加側壁氧化層在感光區的面積將可有效結決金屬矽化物所造成感光二極體靈敏度降低問題。
[1] G. F. AMELIO, M. F. TOMPSETT, and G. E.SMITH (1970), “Experimental verification of the charge-couple device concept,” Bell System Technical Journal, vol. 49, pp. 595-600
[2] JUN-ICHI NISHIZAWA, YAKASHIGE TAMAMUSHI, TADAHIRO OHMI, “Static Induction Transistor Image Sensor”, IEEE Transactions on Electric Device, VOL. ED-26, NO.12, December 1979
[3] T. NAKAMURA, K. MATSUMOTO, R. HYUGA, and A. YUDSA, “ A New MOS Image Sensor Operating In a Non-Destructive Read Out Mode,” IEDM Tech. Dig. , Dec. 1986, pp. 353-356
[4] NOBUYOSHI TANAKA, TADAHIRO OHMI, YOSHIO NAKAMURA, “A Novel Bipolar Imaging Device With Self-Noise-Reduction Capability”, IEEE Transactions on Electric Devices. VOL. 36. NO. 1, January 1989 pp. 31-38
[5] JAROSLAV HYNECEK “A New Device Architecture Suitable for High-Resolution and High-Performance Imager Sensors”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL.35 NO. 5, May 1988
[6] ZHIMIN ZHOU “On-Chip Signal Processing for CMOS Active Pixel Image Sensor”, P6
[7] Gene P. WECKLER “ Operation of P-N Junction Photo-detectors in Photon flux integrating mode”, J, SOLIDE, State Circuit, SC-2 NO3 P65~P73, 1967
[8] SHINYA OHBA, “Vertical Smear Noise Model for an MOS-Type Color Imager”, IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol. ED-32, No.8, August 1985
[9] S.M.SZE “Physics of Semiconductor Device”, P407
[10] Eric R. FOSSUM “Active Pixel Sensor: Are CCD’S Dinosaurs?” SPIE Vol. 1900/3。
[11] Danny SCHEFFER, “Random Addressable 2048x2048 Active Pixel Image Sensor” IEEE, Transactions on Electric Device Vol. 44, N0.10.1997 。
[12] N.TU, “CMOS Active Pixel Image Sensor With Combined Linear And Logarithmic Mode Operation”, IEEE, 1998, P754
[13] 邱志榮 “ CCD/CMOS 影像感測器的發展現況” , Micro-Electronic, 2000,7
[14] Eric R. FOSSUM “CMOS Image Sensor: Electric Camera On A Chip”, IEDM 1995, P1.3.1
[15] Kazuya MATSUM “The Operation Mechanism of a Charge Modulation Device (CMD) Image Sensor”
[16] Masanori Ogata, “ A Small Pixel CMD Image Sensor”, IEEE transactions On Electron Device. VOL 38, NO5 May 1991
[17] SHOU-GWO Wu “ High Performance 0.25um CMOS Imager Technology with Non-SILICIDE Source/Drain Pixel”, 2000,IEDM
[18] MITSUO FUHUDA “Optical Semiconductor Device”,Chapter 4
[19] Donald A. NEAMEN “Semiconductor Physics & Devices” P196
[20] VED MITRA, “Charge Extraction Technique for studying the surface States in MOS Devices” IEEE TRANSACTIONS ON ELECTRON DEVICE. VOL. 40 NO. 5 May 1993.
[21] SHOU-GWO Wu “ High Performance 0.25um CMOS Imager Technology with Non-SILICIDE Source/Drain Pixel”, 2000,IEDM
[22] G﹒A﹒M. HURKX “A New Recombination Model for Device Simulation Including Tunneling”, IEEE Transaction on electric Device, VOL. 39, NO. 2 February 1992.
[23] B﹒JAYANT BALIGA “Power Semiconductor Devices”, Chapter 2, P100.
[24] E. H. NICOLLIAN and A. GOETZBERGER “The Si-SiO2 Interface-Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique” The Bell system Technical Journal 1967 July-August N0.6