簡易檢索 / 詳目顯示

研究生: 陳依玟
Chen, Yi-Wen
論文名稱: 一、利用蛋白質體學探討氧化壓力、抑制Src激酶和榭黃素對大鼠心肌細胞的影響:建立心臟缺血再灌流以及治療的細胞模組 二、利用蛋白質體學分析可利用於疾病中的生物標記蛋白
Ⅰ. Proteomics study of oxidative stress, Src kinase inhibition and quercetin in H9C2 cardiomyocytes: a cell model of heart ischemia reperfusion injury and treatment Ⅱ. The application of proteomics for disease biomarker discovery and mechanism study
指導教授: 詹鴻霖
Chan, Hong-Lin
口試委員: 王慧菁
Lily Wang
張建文
Chang, Chein-Wen
王浩文
Wang, Hao-Ven
周秀專
Chou, Hsiu-Chuan
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 188
中文關鍵詞: 蛋白質體學蛋白質磷酸化缺血再灌流傷害榭黃素大鼠心肌細胞氧化壓力肢體末梢缺血糖尿病移行性膀胱癌氧化還原蛋白質體學子宮肌瘤癌健擇胰臟癌乳癌粒線體
外文關鍵詞: Proteomics, Protein phosphorylation, Ischemia-repurfusion injury, Quercetin, H9C2 cardiomyocyte, Oxidative stress, Critical limb ischemia, Diabetic, Transition carcinoma cancer, Redox proteomics, Uterine leiomyoma, Gemcitabine, Pancreatic cancer, Breast cancer, Mitochondria
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • PART І. 利用蛋白質體學研究大鼠心肌細胞在氧化壓力、酪氨酸激酶抑制子以及榭黃素的影響: 建立心臟缺血再灌流和治療的細胞模型
    心肌缺血再灌流的氧化壓力傷害,容易藉由蛋白質磷酸化的變化來調控基因之表現和代謝,進而影響細胞貼附與存活能力。在本研究中,受到過氧化氫刺激後的大鼠心肌細胞是用來當作心臟缺血再灌流所導致傷害的細胞模組,且經由氧化壓力刺激細胞後,細胞內的蛋白質上產生大量磷酸化的酪胺酸。所以,為了純化氧化壓力所誘導的酪胺酸磷酸化蛋白,我們使用親和性樹脂來得到酪胺酸磷酸化蛋白質,進而利用液相串聯式質譜儀來鑑定磷酸化酪胺酸蛋白質。根據質譜儀分析結果發現約23種蛋白質其功能參與細胞間傳遞、維持細胞骨架以及細胞貼附能力;由此可知,氧化壓力對於細胞貼附能力,型態和存活影響甚鉅,經由STRING網站分析得知Src激酶為這些蛋白質的上游調控者。進一步研究發現,我們利用免疫螢光染色法、螢光偵測流式細胞儀和細胞貼附計數法來證實過氧化氫致使細胞不具貼附能力並走向凋亡,然而前處理固定量的PP1或榭黃素後可保護過氧化氫對細胞所造成的傷害。而榭黃素透過抑制STAT3活性來阻礙過氧化氫所導致細胞發炎反應,藉此有效避免心肌細胞受到缺血再灌流的傷害。綜合以上結果,在氧化壓力下所誘導蛋白質磷酸化以及細胞傷害中Src激酶扮演著重要角色,並且使用Src激酶的抑制劑以及榭黃素可有效避免心臟因缺血再灌流所導致的傷害。

    PART П. 利用蛋白質體學分析可利用於疾病中的生物標記蛋白
    在現今社會裡,糖尿病和癌症的發生是相當普遍且為國人十大死因。早期疾病的發現、手術治療與術後治療可以提升疾病患者存活率。在本論文中,收集代謝性疾病裡包含糖尿病引起的肢體末梢缺血、第一型糖尿病、或移行性膀胱癌和子宮肌瘤病患的血清,進而利用螢光標定二維電泳結合基質輔助雷射脫附游離飛行質譜儀來分析鑑定,並找出相關生物標記蛋白質。從本研究中,特定疾病血清中具有其高度表現的特有生物標記蛋白,例如糖尿病引法末梢肢體缺血病患中所引發的DAPP1、第一型糖尿病患中的血紅素、膀胱癌病患中的硒半胱胺酸專一的延長因子和子宮肌瘤患者中的維生素D鍵結蛋白;特別的是,在第一型糖尿病患中,血紅素呈現氧化狀態。但是大部分鑑定出來的血清蛋白幾乎都和免疫反應以及血液凝結相關的常見蛋白質。為了避免這些血清在血清中大量蛋白質的干擾,所以我們利用細胞來找尋生物標記蛋白。在本論文中,使用胰臟癌細胞和乳癌細胞來尋找關於引發抗藥性和癌化的生物標記蛋白。在gemcitabine所誘導的抗藥性胰臟癌細胞裡含有大量核糖核苷二磷酸還原酶而且胰臟癌抗藥性的發生可能和腫瘤抑制子p53有關,而在高度癌化的乳癌細胞中,粒腺體大量表現出鈣結合線粒體載體蛋白SCaMC-1,進一步,SCaMC-1被證實在乳癌病患血清中也有較高含量。從此論文得知,從血清中找尋可偵測或治療疾病的生物標記蛋白仍是相當困難,但另一方面,先從細胞平台上獲得具疾病專一性的標記蛋白質後,再進一步利用病患血清來確認哪些生物標記蛋白是可被用於疾病篩檢與治療。


    PART І. Proteomics study of oxidative stress, Src kinase inhibition (PP1) and Quercetin in H9C2 cardiomyocytes: a cell model of heart ischemia reperfusion injury and treatment.
    Oxidative stress production of myocardial ischemia/reperfusion injury leads to protein phosphorylation in regulating gene expression, metabolism, cell adhesion and survival. In this thesis, we used hydrogen peroxide treatment of H9C2 rat cardiomyocytes as a model of oxidative stress in heart ischemia reperfusion injury. A proteomics approach using anti-phosphotyrosine affinity purification and LC-MS/MS was then used to identify the stress-induced protein phosphorylation. We showed that oxidative stress induces a robust tyrosine phosphorylation of multiple proteins in this cell type. Most of identified tyrosine phosphorylated proteins were relative to cell-cell junctions, the actin cytoskeleton and cell adhesion. This suggested that oxidative stress may have a profound effect on intercellular connections and the cytoskeleton to affect cell adhesion, morphology and survival. After stress-induced phosphotyrosine proteins were analyzed by STRING, Src kinase was shown to be a major upstream regulator of these events. Furthermore, immunofluorescence studies, fluorescent activated cell sorting and cell-based assays were used to demonstrate H2O2-induced modifications of cell adhesion structures and cytoskeleton, de-adhesion and apoptosis, which were reversed by treatment with the Src kinase inhibitor PP1 or quercetin. Moreover, quercetin likely blocked the H2O2-induced inflammatory response through STAT3 modulation, which also contributed in preventing ischemia/reperfusion injury in cardiomyocytes. These findings provide the critical role of Src kinase in oxidative stress-induced phosphorylation and cell damage in cardiomyocytes and suggested that targeting Src kinase or quercetin may be an effective strategy for preventing ischemia reperfusion injury in the heart.

    PART П. The application of Proteomics for disease biomarker discovery
    Cancer and diabetic are high incidence and mortality in worldwide; however, early detection, surgical resection and postoperative therapy can lead to survival improvement for cancer or diabetes. In recent study, body fluids of patient were used to screen markers, such as plasma, urine and cerebrospinal fluid. Here, plasma of critical limb ischemia (CLI), type 1 diabetic (T1DM), transition carcinoma cancer and uterine leiomyoma were collected and analyzed by 2D-DIGE and MALDI-TOF. Then, particular protein markers were found in specific diseases, such as dual adapter for phosphotyrosine and 3-phosphotyrosine and 3-phosphoinositide (DAPP1) in CLI, hemopexin in T1DM, selenocysteine-specific elongation factor in TCC and vitamin D-binding protein in uterine leiomyoma. Nevertheless, most identified plasma proteins are related to inflammatory responses and blood coagulation. Therefore, a cell-based platform was established to screen protein markers relating to gemcitabine (GEM)-induced drug resistance pancreatic cells and tumorigenic breast cells. In GEM-induced drug resistant pancreatic cells, ribonucleoside-diphosphate reductase large subunit significantly overexpressed and tumor suppressor protein p53 may interplay with GEM-induced pancreatic cell resistance. In addition, in breast cancer cells, the level of calcium-binding mitochondrial carrier protein SCaMC-1 in tumorigenetic breast cancer cells or breast cancer patients’ plasma was higher than that of normal cell or health donors’ plasma. These data demonstrate that plasma proteomics provides a lot of common proteins between various diseases, but a cell based strategy provides a good platform for specific protein markers discovery in particular disease and afterwards these protein markers are potential for disease screening.

    Overview................................................1 中文摘要.................................................2 Abstract................................................4 Abbreviations...........................................6 Part I..................................................9 Chapter 1 Introductions ...............................10 Chapter 2 Materials and Methods .......................17 2.1 Chemicals and Reagents.............................17 2.2 Cell lines, cell culture, cell treatment...........17 2.3 Immunoblotting.....................................18 2.4 Small-scale immunoprecipitation....................18 2.5 Large-scale tyrosine phosphorylated protein enrichment.............................................19 2.6 In-gel digestion...................................20 2.7 Liquid chromatography and tandem mass spectrometry.20 2.8 Immunostaining and fluorescence microscopy.........21 2.9 Adhesion assays....................................22 2.10 MTT cell viability assay..........................22 2.11 Wound healing assay...............................23 2.12 Apoptosis assay using flow cytometry..............23 2.13 Reactive oxygen species in cells were detected using DCFH-DA assay..........................................23 2.14 2D-DIGE and gel image analysis...............................................23 2.15 Protein identification by MALDI-TOF MS............25 Chapter 3 Results......................................26 3.1 Hydrogen peroxide treatment induces tyrosine phosphorylation and activation of PI3K and stress response signaling pathways in H9C2 cardiomyocyte..........................................26 3.2 Identification of hydrogen peroxide-induced tyrosine phosphorylated proteins................................27 3.3 Role of Src kinases in H2O2-induced tyrosine phosphorylation........................................28 3.4 Role of Src kinase in hydrogen peroxide-induced loss of cell adhesion and viability.........................29 3.5 Quercetin pretreatment suppresses hydrogen peroxide-induced tyrosine phosphorylation in cardiomyocytes.....31 3.6 Quercetin inhibits hydrogen peroxide-induced changes in cell morphology and loss of cell adhesion...........31 3.7 Quercetin inhibits phosphorylation of STAT3, PI3K/Akt and p38 kinase and the expression of COX-2 in H2O2-induced H9C2 cells.....................................32 3.8 Pretreatment with quercetin suppresses ROS production in H2O2-treated H9C2 cells.............................32 3.9 Quercetin reduces hydrogen peroxide-induced H9C2 cell apoptosis..............................................33 3.10 2D-DIGE analysis of untreated, H2O2-treated H9C2 cells and PP1 or quercetin pretreatment followed by treatment with H2O2....................................33 Chapter 4 Discussions..................................35 Chapter 5 Conclusions..................................43 Chapter 6 Tables.......................................44 Table 1 Proteins identified in large-scale anti-phosphotyrosine immunoprecipitation from H2O2-treated H9C2 cells.............................................45 Table 2 Alphabetic list of identified differentially expressed proteins after 2D-DIGE coupled with MALDI-TOF mass spectrometry analysis in H9C2 cells in response to H2O2 treatment and pre-treatment with PP1 or quercetin..............................................47 Chapter 7 Figures......................................49 Figure 1 Effect of hydrogen peroxide treatment on signaling in H9C2 cells and purification of tyrosine phosphorylated proteins................................50 Figure 2 MS/MS spectra of identified peptides..........51 Figure 3 Functional distribution and STRING network of the identified H2O2 -induced tyrosine phosphorylated proteins...............................................52 Figure 4 Effect of Src kinase inhibitor, PP1, on H2O2-induced signaling events and tyrosine phosphorylated protein recovery.......................................53 Figure 5 Immunofluorescence analysis of morphological and protein localization changes in H9C2 cells in response to H2O2 treatment and pre-treatment with PP1..............54 Figure 6 Effect of H2O2 and Src kinase inhibitor on H9C2 cell adhesion, viability and apoptosis.................55 Figure 7 Hydrogen peroxide treatment induces tyrosine phosphorylation in H9C2 cells..........................56 Figure 8 Effects of quercetin on the cell morphology, migration, and adhesion of H2O2-treated H9C2 cells..................................................57 Figure 9 Effects of quercetin on the inflammatory response in H2O2-treated H9C2 cells....................59 Figure 10 Effects of quercetin on ROS production in H2O2 -H9C2 cells............................................60 Figure 11 Effects of quercetin on cell apoptosis in H2O2-treated H9C2 cells.....................................61 Figure 12 Proteomic comparison in H9C2 cells in response to H2O2 treatment and pre-treatment with PP1 or quercetin..............................................62 Figure 13 Percentage of functional distribution of differentially expressed proteins in H9C2 cell responses to H2O2 and quercetin treatment based on proteomic analysis...............................................63 Figure 14 Hypothesis model illustrating how PP1 and quercetin protects cardiomyocytes from ROS treatment...64 Part II ...............................................65 Chapter 1 Introductions..........................................66 Human plasma.................................................66 Tumor cell.............................................79 Chapter 2 Results of human plasma............73 2.1 The role of Critical Limb Ischemia in Diabetic Patients with Hemodialysis.............................73 2.2 Thiol group exchange of Hemopexin in Type I diabetic plasma.................................................75 2.3 Plasma biomarkers in Bladder transition carcinoma..............................................76 2.4 Plasma biomarkers in uterine leiomyoma.............78 Chapter 3 Discussions of human plasma..................80 3.1 Critical limb ischemia patients’ plasma proteomics.............................................80 3.2 Type I DM patients’ plasma redox proteomics........82 3.3 Bladder transition carcinoma patients’ plasma proteomics.............................................83 3.4 Uterine leiomyoma patients’ plasma proteomics.............................................84 Chapter 4 Results of tumor cell........................87 4.1 Proteomics analysis of Gemcitabine-induced drug resistance in pancreatic cancer cells..................87 4.2 Mitochondria protein markers in MCF7 and MDA-MB-231....................................................89 Chapter 5 Discussions of tumor cell....................93 5.1 Proteomic analysis of gemcitabine-induced drug resistance in pancreatic cancer cells..................93 5.2 Mitochondria proteome in MCF10A, MCF7 and MDA-MB-231....................................................96 Chapter 6 Conclusions.................................102 Chapter 7 Materials and Methods ......................104 7.1 Chemicals and Reagents............................104 7.2 Plasma samples and collection.....................104 7.3 Proteomics strategies.............................106 7.4 Cultivate Cell line...............................111 7.5 Functional assays.................................111 Chapter 8 Tables......................................114 Table 1 Clinical parameters of diabetic hemodialytic patients with / without critical limb ischemia participating in this investigation...................115 Table 2 Alphabetical list of critical limb ischemia-induced differentially expressed plasma proteins identified by MALDI-TOF peptide mass fingerprinting following 2D-DIGE analysis............................116 Table 3 Differentially labeled proteins identified by cysteine labeling 2D-DIGE and MS in T1DM.............119 Table 4 List of differentially expressed plasma proteins between bladder TCC patients (n=15) and healthy donors group (n=5) as identified by MALDI-TOF peptide mass fingerprinting following 2D-DIGE analysis.............122 Table 5 Alphabetical list of differentially expressed plasma proteins between uterine leiomyoma patients and healthy individuals as identified by MALDI-TOF peptide mass fingerprinting after 2D-DIGE analysis............124 Table 6 Alphabetical list of identified differentially expressed proteins across various levels of gemcitabine-induced drug resistant PANC-1 pancreatic cells obtained after 2D-DIGE coupled with MALDI-TOF mass spectrometry analysis.............................................126 Table 7 List for proteins potentially contributing to fatty acid synthesis, fatty acid biodegradation, protein synthesis, protein degradation, vascular transport, DNA synthesis, detoxification and calcium-dependent regulation in comparing GEM-resistant PANC-1 cells with GEM-sensitive PANCcells..............................129 Table 8 Alphabetic list of identified differentially expressed mitochondrial proteins across MCF-10A, MCF-7, and MDA-MB-231 breast cells obtained after 2D-DIGE coupled with MALDI-TOF mass spectrometry analysis.....130 Table 9 Potential proteins from identified protein list..................................................131 Chapter 9 Figures.....................................133 Figure 1 The efficiency evaluation for removal of albumin and immunoglobulin G from plasma samples.............134 Figure 2 Experimental design to perform 2D-DIGE/MALDI-TOF MS-based quantitative plasma proteomics...............135 Figure 3 2D-DIGE analysis of critical limb ischemia-induced differentially expressed proteins............136 Figure 4 Peptide finger printing of identified proteins CD5L and haptoglobin..................................137 Figure 5 Percentage of plasma proteins identified from albumin and imunnoglobulin G depleted plasma by 2D-DIGE / MALDI-TOF MS for critical limb ischemia according to their biological functions and subcellular location...138 Figure 6 Representative images of the identified spots displaying critical limb ischemia–dependent protein abundance changes....................................139 Figure 7 Representative immunoblotting analysis of haptoglobin and ELISA analysis of haptoglobin, 14-3-3 zeta and leucine-rich alpha-2-glycoprotein for selected differentially expressed plasma proteins identified by proteomic analysis in patients with and without critical limb ischemia........................................140 Figure 8 Redox 2D-DIGE analysis of type 1 diabetes mellitus-induced differential cysteine-modification in plasma...............................................141 Figure 9 Percentage of plasma proteins identified from albumin and imunnoglobulin G depleted plasma by 2D-DIGE / MALDI-TOF MS for type 1 diabetes mellitus according to their biological functions............................142 Figure 10 Validation of the thiol reactive plasma protein, hemopexin, identified through redox-proteomic study in between type 1 diabetes mellitus patients and healthy donors by immunoprecipitation.................143 Figure 11 2D-DIGE comparative analysis of plasma from bladder TCC cases and healthy controls................144 Figure 12 Peptide mass fingerprinting analysis of identified proteins by MALDI-TOF/TOF MS...............145 Figure 13 Percentage of identified differentially expressed plasma proteins between bladder TCC cases and healthy donors according to their sub-cellular locations and biological functions by 2D-DIGE / MALDI-TOF MS....146 Figure 14 Representative images of the identified spots displaying bladder TCC–dependent protein expression changes.............................................147 Figure 15 Immunoblotting and ELISA analysis of Carbonic anhydrase 1, haptoglobin, leucine-rich alpha-2-glycoprotein and actin in bladder TCC plasma and healthy control plasma........................................148 Figure 16 2D-DIGE analysis of uterine leiomyoma-induced differentially expressed proteins…....................149 Figure 17 Peptide finger printing of identified proteins..............................................150 Figure 18 Representative images of the identified spots displaying uterine leiomyoma–dependent protein expression changes...............................................151 Figure 19 Percentage of plasma proteins identified from albumin and imunnoglobulin G depleted plasma by 2D-DIGE / MALDI-TOF MS for uterine leiomyoma according to their biological functions.................................152 Figure 20 Representative immunoblotting analysis of carbonic anhydrase 1 and ELISA analysis of leucine-rich alpha-2-glycoprotein and vitamin D-binding protein for selected differentially expressed plasma proteins identified by 2D-DIGE based proteomic analysis in patients with uterine leiomyoma and healthy donors....153 Figure 21 Mascot analysis of matched peptides in native and degraded haptoglobin..............................154 Figure 22 2D-DIGE analysis of differentially expressed protein profiling in response to various levels of gemcitabine-induced drug resistance...................155 Figure 23 Representative images of the identified spots annexin A4 and acyl-coenzyme A synthetase displaying various levels of gemcitabine resistance-induced protein expression changes....................................156 Figure 24 Peptide mass fingerprint of identified proteins..............................................157 Figure 25 Representative ELISA and immunoblotting analyses for selected differentially expressed proteins identified by proteomic analysis in various levels of gemcitabine resistant cells...........................158 Figure 26 Interaction networks of identified proteins..159 Figure 27 Analysis of purity of the mitochondrial protein extracts by immunoblotting and 2D-DIGE................160 Figure 28 Analysis of the breast mitochondrial proteomes of MCF-10A, MCF-7, and MDA-MB-231 cells by 2D-DIGE....161 Figure 29 Differential expressions of mitochondrial proteins across MCF-10A, MCF-7, and MDA-MB-231........162 Figure 30 Percentage of intracellular locations of isolated mitochondrial fractions identified by 2D-DIGE/MALDI-TOF MS for MCF-10A, MCF-7, and MDA-MB-231 cells.................................................163 Figure 31 Representative immunoblotting and immunofluorescence analysis for selected differentially expressed protein (MnSOD) identified by mitochondrial proteome analysis across MCF-10A, MCF-7, and MDA-MB-231 cells.................................................164 Figure 32 Immunoblotting and immunofluorescence analysis of the expression of SCaMC-1 across normal breast cell (MCF-10A) and various breast cancer cell lines (MCF-7, MDA-MB-231, MDA-MB-453, and MDA-MB-435 cells)........165 Figure 33 ELISA analysis of plasma SCaMC-1 levels in healthy donors, breast cancer patients without metastasis, and breast cancer patients with metastasis...........................................167 Figure 34 Immunofluorescence analysis of subcellular distribution of prohibitin across MCF-10A, MCF-7, MDA-MB-453, MDA-MB-231, MDA-MB-361, MDA-MB-435, and SKBR3 cells.................................................168 Figure 35 Model of GEM-induced PANC-1 resistance......169 References............................................170 Appendix..............................................185 Publication list .....................................185

    1. Takano, H., et al., Oxidative stress-induced signal transduction pathways in cardiac myocytes: involvement of ROS in heart diseases. Antioxid Redox Signal, 2003. 5(6): p. 789-94.
    2. D'Autreaux, B. and M.B. Toledano, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol, 2007. 8(10): p. 813-24.
    3. Scandalios, J.G., The rise of ROS. Trends Biochem Sci, 2002. 27(9): p. 483-6.
    4. Rhee, S.G., et al., Cellular regulation by hydrogen peroxide. J Am Soc Nephrol, 2003. 14(8 Suppl 3): p. S211-5.
    5. Corcoran, A. and T.G. Cotter, Redox regulation of protein kinases. FEBS J, 2013. 280(9): p. 1944-65.
    6. Venardos, K.M., et al., Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr Med Chem, 2007. 14(14): p. 1539-49.
    7. Zhao, Z.Q., Oxidative stress-elicited myocardial apoptosis during reperfusion. Curr Opin Pharmacol, 2004. 4(2): p. 159-65.
    8. Saini, H.K., J. Machackova, and N.S. Dhalla, Role of reactive oxygen species in ischemic preconditioning of subcellular organelles in the heart. Antioxid Redox Signal, 2004. 6(2): p. 393-404.
    9. Krebs, E.G., The growth of research on protein phosphorylation. Trends Biochem Sci, 1994. 19(11): p. 439.
    10. Cooper, J.A., B.M. Sefton, and T. Hunter, Detection and quantification of phosphotyrosine in proteins. Methods Enzymol, 1983. 99: p. 387-402.
    11. Blume-Jensen, P. and T. Hunter, Oncogenic kinase signalling. Nature, 2001. 411(6835): p. 355-65.
    12. Viola, H.M. and L.C. Hool, Targeting calcium and the mitochondria in prevention of pathology in the heart. Curr Drug Targets, 2011. 12(5): p. 748-60.
    13. McLachlin, D.T. and B.T. Chait, Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr Opin Chem Biol, 2001. 5(5): p. 591-602.
    14. Sun, X., J.F. Chiu, and Q.Y. He, Application of immobilized metal affinity chromatography in proteomics. Expert Rev Proteomics, 2005. 2(5): p. 649-57.
    15. Zhou, H., J.D. Watts, and R. Aebersold, A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol, 2001. 19(4): p. 375-8.
    16. Schumacher, J.A., et al., Evaluation of enrichment techniques for mass spectrometry: identification of tyrosine phosphoproteins in cancer cells. J Mol Diagn, 2007. 9(2): p. 169-77.
    17. Emadali, A., et al., Proteomic analysis of tyrosine phosphorylation during human liver transplantation. Proteome Sci, 2007. 5: p. 1.
    18. Warmuth, M., et al., SRC family kinases: potential targets for the treatment of human cancer and leukemia. Curr Pharm Des, 2003. 9(25): p. 2043-59.
    19. Hanke, J.H., et al., Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J Biol Chem, 1996. 271(2): p. 695-701.
    20. Liu, Y., et al., Structural basis for selective inhibition of Src family kinases by PP1. Chem Biol, 1999. 6(9): p. 671-8.
    21. Tatton, L., et al., The Src-selective kinase inhibitor PP1 also inhibits Kit and Bcr-Abl tyrosine kinases. J Biol Chem, 2003. 278(7): p. 4847-53.
    22. Bain, J., et al., The specificities of protein kinase inhibitors: an update. Biochem J, 2003. 371(Pt 1): p. 199-204.
    23. Akiyama, C., et al., Src family kinase inhibitor PP1 reduces secondary damage after spinal cord compression in rats. J Neurotrauma, 2004. 21(7): p. 923-31.
    24. Boots, A.W., G.R. Haenen, and A. Bast, Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol, 2008. 585(2-3): p. 325-37.
    25. Sanhueza, J., et al., Changes in the xanthine dehydrogenase/xanthine oxidase ratio in the rat kidney subjected to ischemia-reperfusion stress: preventive effect of some flavonoids. Res Commun Chem Pathol Pharmacol, 1992. 78(2): p. 211-8.
    26. Sun, B., et al., Isorhamnetin inhibits H(2)O(2)-induced activation of the intrinsic apoptotic pathway in H9c2 cardiomyocytes through scavenging reactive oxygen species and ERK inactivation. J Cell Biochem, 2012. 113(2): p. 473-85.
    27. Kyaw, M., et al., Antioxidants inhibit JNK and p38 MAPK activation but not ERK 1/2 activation by angiotensin II in rat aortic smooth muscle cells. Hypertens Res, 2001. 24(3): p. 251-61.
    28. Staedler, D., et al., Drug combinations with quercetin: doxorubicin plus quercetin in human breast cancer cells. Cancer Chemother Pharmacol, 2011. 68(5): p. 1161-72.
    29. Kaiserova, H., et al., Flavonoids as protectors against doxorubicin cardiotoxicity: role of iron chelation, antioxidant activity and inhibition of carbonyl reductase. Biochim Biophys Acta, 2007. 1772(9): p. 1065-74.
    30. Tyagi, A., et al., Silibinin modulates TNF-alpha and IFN-gamma mediated signaling to regulate COX2 and iNOS expression in tumorigenic mouse lung epithelial LM2 cells. Mol Carcinog, 2011.
    31. Yagi, T., et al., Activation of signal transducers and activators of transcription 3 in the hippocampal CA1 region in a rat model of global cerebral ischemic preconditioning. Brain Res, 2011. 1422: p. 39-45.
    32. Dikdan, G.S., et al., Role of oxidative stress in the increased activation of signal transducers and activators of transcription-3 in the fatty livers of obese Zucker rats. Surgery, 2004. 136(3): p. 677-85.
    33. Morgan, M.J. and Z.G. Liu, Reactive oxygen species in TNFalpha-induced signaling and cell death. Mol Cells, 2010. 30(1): p. 1-12.
    34. Muthian, G. and J.J. Bright, Quercetin, a flavonoid phytoestrogen, ameliorates experimental allergic encephalomyelitis by blocking IL-12 signaling through JAK-STAT pathway in T lymphocyte. J Clin Immunol, 2004. 24(5): p. 542-52.
    35. Marchant, D.J., et al., Inflammation in myocardial diseases. Circ Res, 2012. 110(1): p. 126-44.
    36. Zee, B.M., N.L. Young, and B.A. Garcia, Quantitative proteomic approaches to studying histone modifications. Curr Chem Genomics, 2011. 5(Suppl 1): p. 106-14.
    37. Chou, H.C., et al., Proteomics study of oxidative stress and Src kinase inhibition in H9C2 cardiomyocytes: a cell model of heart ischemia-reperfusion injury and treatment. Free Radic Biol Med, 2010. 49(1): p. 96-108.
    38. Inge, L.J., et al., alpha-Catenin overrides Src-dependent activation of beta-catenin oncogenic signaling. Mol Cancer Ther, 2008. 7(6): p. 1386-97.
    39. Karni, R., et al., Active Src elevates the expression of beta-catenin by enhancement of cap-dependent translation. Mol Cell Biol, 2005. 25(12): p. 5031-9.
    40. Martinez-Quiles, N., et al., Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP. Mol Cell Biol, 2004. 24(12): p. 5269-80.
    41. Sun, C.K., et al., Proline-rich tyrosine kinase 2 (Pyk2) promotes proliferation and invasiveness of hepatocellular carcinoma cells through c-Src/ERK activation. Carcinogenesis, 2008. 29(11): p. 2096-105.
    42. Goldberg, G.S., et al., Src phosphorylates Cas on tyrosine 253 to promote migration of transformed cells. J Biol Chem, 2003. 278(47): p. 46533-40.
    43. Klinghoffer, R.A., et al., Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J, 1999. 18(9): p. 2459-71.
    44. Lee, K.M. and M.L. Villereal, Tyrosine phosphorylation and activation of pp60c-src and pp125FAK in bradykinin-stimulated fibroblasts. Am J Physiol, 1996. 270(5 Pt 1): p. C1430-7.
    45. Raedschelders, K., D.M. Ansley, and D.D. Chen, The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Ther, 2012. 133(2): p. 230-55.
    46. Hochhauser, E., et al., Role of adenosine receptor activation in antioxidant enzyme regulation during ischemia-reperfusion in the isolated rat heart. Antioxid Redox Signal, 2004. 6(2): p. 335-44.
    47. Molyneux, C.A., M.C. Glyn, and B.J. Ward, Oxidative stress and cardiac microvascular structure in ischemia and reperfusion: the protective effect of antioxidant vitamins. Microvasc Res, 2002. 64(2): p. 265-77.
    48. Barta, E., et al., Protective effect of alpha-tocopherol and L-ascorbic acid against the ischemic-reperfusion injury in patients during open-heart surgery. Bratisl Lek Listy, 1991. 92(3-4): p. 174-83.
    49. Westhuyzen, J., et al., Effect of preoperative supplementation with alpha-tocopherol and ascorbic acid on myocardial injury in patients undergoing cardiac operations. J Thorac Cardiovasc Surg, 1997. 113(5): p. 942-8.
    50. Demirag, K., et al., The protective effects of high dose ascorbic acid and diltiazem on myocardial ischaemia-reperfusion injury. Middle East J Anesthesiol, 2001. 16(1): p. 67-79.
    51. Kwon, J.H., et al., Protective effect of heat shock protein 27 using protein transduction domain-mediated delivery on ischemia/reperfusion heart injury. Biochem Biophys Res Commun, 2007. 363(2): p. 399-404.
    52. Pchejetski, D., et al., Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis. Circ Res, 2007. 100(1): p. 41-9.
    53. Fiorillo, C., et al., Protective effects of the PARP-1 inhibitor PJ34 in hypoxic-reoxygenated cardiomyoblasts. Cell Mol Life Sci, 2006. 63(24): p. 3061-71.
    54. Zhang, Y.Q. and B. Herman, ARC protects rat cardiomyocytes against oxidative stress through inhibition of caspase-2 mediated mitochondrial pathway. J Cell Biochem, 2006. 99(2): p. 575-88.
    55. Su, C.Y., et al., Constitutive and inducible hsp70s are involved in oxidative resistance evoked by heat shock or ethanol. J Mol Cell Cardiol, 1998. 30(3): p. 587-98.
    56. Takeishi, Y., et al., Differential regulation of p90 ribosomal S6 kinase and big mitogen-activated protein kinase 1 by ischemia/reperfusion and oxidative stress in perfused guinea pig hearts. Circ Res, 1999. 85(12): p. 1164-72.
    57. Johnson, D., et al., Regulation of both apoptosis and cell survival by the v-Src oncoprotein. Cell Death Differ, 2000. 7(8): p. 685-96.
    58. Irby, R.B. and T.J. Yeatman, Increased Src activity disrupts cadherin/catenin-mediated homotypic adhesion in human colon cancer and transformed rodent cells. Cancer Res, 2002. 62(9): p. 2669-74.
    59. Miravet, S., et al., Tyrosine phosphorylation of plakoglobin causes contrary effects on its association with desmosomes and adherens junction components and modulates beta-catenin-mediated transcription. Mol Cell Biol, 2003. 23(20): p. 7391-402.
    60. Gozin, A., et al., Reactive oxygen species activate focal adhesion kinase, paxillin and p130cas tyrosine phosphorylation in endothelial cells. Free Radic Biol Med, 1998. 25(9): p. 1021-32.
    61. Bromann, P.A., H. Korkaya, and S.A. Courtneidge, The interplay between Src family kinases and receptor tyrosine kinases. Oncogene, 2004. 23(48): p. 7957-68.
    62. Catarzi, S., et al., Redox regulation of platelet-derived-growth-factor-receptor: role of NADPH-oxidase and c-Src tyrosine kinase. Biochim Biophys Acta, 2005. 1745(2): p. 166-75.
    63. Markova, B., et al., Identification of protein tyrosine phosphatases associating with the PDGF receptor. Biochemistry, 2003. 42(9): p. 2691-9.
    64. Chiarugi, P., et al., Insight into the role of low molecular weight phosphotyrosine phosphatase (LMW-PTP) on platelet-derived growth factor receptor (PDGF-r) signaling. LMW-PTP controls PDGF-r kinase activity through TYR-857 dephosphorylation. J Biol Chem, 2002. 277(40): p. 37331-8.
    65. Palmer, A., et al., EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol Cell, 2002. 9(4): p. 725-37.
    66. Bain, J., et al., The selectivity of protein kinase inhibitors: a further update. Biochem J, 2007. 408(3): p. 297-315.
    67. Hwang, J.T., et al., Resveratrol protects ROS-induced cell death by activating AMPK in H9c2 cardiac muscle cells. Genes Nutr, 2008. 2(4): p. 323-6.
    68. Liao, Z., et al., Cardioprotective effect of sasanquasaponin preconditioning via bradykinin-NO pathway in isolated rat heart. Phytother Res, 2009. 23(8): p. 1146-53.
    69. Shao, Z.H., et al., Grape seed proanthocyanidins protect cardiomyocytes from ischemia and reperfusion injury via Akt-NOS signaling. J Cell Biochem, 2009. 107(4): p. 697-705.
    70. Han, S.Y., et al., Protective effects of purified safflower extract on myocardial ischemia in vivo and in vitro. Phytomedicine, 2009. 16(8): p. 694-702.
    71. Lu, N., Y. Sun, and X. Zheng, Orientin-induced cardioprotection against reperfusion is associated with attenuation of mitochondrial permeability transition. Planta Med, 2011. 77(10): p. 984-91.
    72. Huveneers, S. and E.H. Danen, Adhesion signaling - crosstalk between integrins, Src and Rho. J Cell Sci, 2009. 122(Pt 8): p. 1059-69.
    73. Stein, A.B., et al., Delayed adaptation of the heart to stress: late preconditioning. Stroke, 2004. 35(11 Suppl 1): p. 2676-9.
    74. Krasilnikov, M.A., Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc), 2000. 65(1): p. 59-67.
    75. Aldemir, M., et al., Quercetin has a protective role on histopathological findings on testicular ischaemia-reperfusion injury in rats. Andrologia, 2012. 44 Suppl 1: p. 479-83.
    76. Dekanski, D., et al., Protective effect of olive leaf extract on hippocampal injury induced by transient global cerebral ischemia and reperfusion in Mongolian gerbils. Phytomedicine, 2011. 18(13): p. 1137-43.
    77. Pandey, A.K., et al., The role of ASIC1a in neuroprotection elicited by quercetin in focal cerebral ischemia. Brain Res, 2011. 1383: p. 289-99.
    78. Cao, X., et al., The effects of quercetin in cultured human RPE cells under oxidative stress and in Ccl2/Cx3cr1 double deficient mice. Exp Eye Res, 2010. 91(1): p. 15-25.
    79. Skalski, M., et al., SNARE-mediated membrane traffic is required for focal adhesion kinase signaling and Src-regulated focal adhesion turnover. Biochim Biophys Acta, 2011. 1813(1): p. 148-58.
    80. Calvert, J.W., et al., Inhibition of N-ethylmaleimide-sensitive factor protects against myocardial ischemia/reperfusion injury. Circ Res, 2007. 101(12): p. 1247-54.
    81. Hu, L.D., et al., EVL (Ena/VASP-like) expression is up-regulated in human breast cancer and its relative expression level is correlated with clinical stages. Oncol Rep, 2008. 19(4): p. 1015-20.
    82. Wanner, S.J., et al., Molecular cloning and expression of Ena/Vasp-like (Evl) during Xenopus development. Gene Expr Patterns, 2005. 5(3): p. 423-8.
    83. Takaku, M., et al., Recombination activator function of the novel RAD51- and RAD51B-binding protein, human EVL. J Biol Chem, 2009. 284(21): p. 14326-36.
    84. Slupphaug, G., B. Kavli, and H.E. Krokan, The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res, 2003. 531(1-2): p. 231-51.
    85. Yochem, J., et al., Isopentenyl-diphosphate isomerase is essential for viability of Caenorhabditis elegans. Mol Genet Genomics, 2005. 273(2): p. 158-66.
    86. Izawa, T., et al., Elongation factor-1 alpha is a novel substrate of rho-associated kinase. Biochem Biophys Res Commun, 2000. 278(1): p. 72-8.
    87. Kobayashi, Y. and S. Yonehara, Novel cell death by downregulation of eEF1A1 expression in tetraploids. Cell Death Differ, 2009. 16(1): p. 139-50.
    88. Galasinski, W., Eukaryotic polypeptide elongation system and its sensitivity to the inhibitory substances of plant origin. Proc Soc Exp Biol Med, 1996. 212(1): p. 24-37.
    89. Wang, H., et al., Signal transducer and activator of transcription 3 in liver diseases: a novel therapeutic target. Int J Biol Sci, 2011. 7(5): p. 536-50.
    90. Waris, G., et al., Hepatitis C virus (HCV) constitutively activates STAT-3 via oxidative stress: role of STAT-3 in HCV replication. J Virol, 2005. 79(3): p. 1569-80.
    91. Xiao, Y., et al., Lower phosphorylation of p38 MAPK blocks the oxidative stress-induced senescence in myeloid leukemic CD34(+)CD38 (-) cells. J Huazhong Univ Sci Technolog Med Sci, 2012. 32(3): p. 328-33.
    92. Norgren, L., et al., Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg, 2007. 45 Suppl S: p. S5-67.
    93. Varu, V.N., M.E. Hogg, and M.R. Kibbe, Critical limb ischemia. J Vasc Surg, 2010. 51(1): p. 230-41.
    94. Slovut, D.P. and T.M. Sullivan, Critical limb ischemia: medical and surgical management. Vasc Med, 2008. 13(3): p. 281-91.
    95. Silvestro, A., et al., Falsely high ankle-brachial index predicts major amputation in critical limb ischemia. Vasc Med, 2006. 11(2): p. 69-74.
    96. Ubbink, D.T., et al., Prediction of imminent amputation in patients with non-reconstructible leg ischemia by means of microcirculatory investigations. J Vasc Surg, 1999. 30(1): p. 114-21.
    97. Ono, K., et al., Ankle-brachial blood pressure index predicts all-cause and cardiovascular mortality in hemodialysis patients. J Am Soc Nephrol, 2003. 14(6): p. 1591-8.
    98. Guerrero, A., et al., Peripheral arterial disease in patients with stages IV and V chronic renal failure. Nephrol Dial Transplant, 2006. 21(12): p. 3525-31.
    99. Finne, P., et al., Incidence of end-stage renal disease in patients with type 1 diabetes. JAMA, 2005. 294(14): p. 1782-7.
    100. Cameron, J.S., The discovery of diabetic nephropathy: from small print to centre stage. J Nephrol, 2006. 19 Suppl 10: p. S75-87.
    101. Giacco, F. and M. Brownlee, Oxidative stress and diabetic complications. Circ Res, 2010. 107(9): p. 1058-70.
    102. Vlassara, H. and M.R. Palace, Glycoxidation: the menace of diabetes and aging. Mt Sinai J Med, 2003. 70(4): p. 232-41.
    103. Nishikawa, T., et al., Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 2000. 404(6779): p. 787-90.
    104. Cumming, R.C., et al., Protein disulfide bond formation in the cytoplasm during oxidative stress. J Biol Chem, 2004. 279(21): p. 21749-58.
    105. Chan, H.L., et al., Proteomic analysis of UVC irradiation-induced damage of plasma proteins: Serum amyloid P component as a major target of photolysis. FEBS Lett, 2006. 580(13): p. 3229-36.
    106. Chan, H.L., et al., Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresis. Proteomics, 2005. 5(11): p. 2908-26.
    107. Wu, T.F., W.L. Ku, and Y.G. Tsay, Proteome-based diagnostics and prognosis of bladder transitional cell carcinoma. Expert Rev Proteomics, 2007. 4(5): p. 639-47.
    108. Sengupta, S. and M.L. Blute, The management of superficial transitional cell carcinoma of the bladder. Urology, 2006. 67(3 Suppl 1): p. 48-54; discussion 54-5.
    109. Lance, R.S. and H.B. Grossman, Recent developments in the treatment of bladder cancer. Adv Exp Med Biol, 2003. 539(Pt A): p. 3-14.
    110. Grossman, H.B. and C.P. Dinney, Markers of bladder cancer State of the art. Urol Oncol, 2000. 5(1): p. 3-10.
    111. Tyan, Y.C., et al., Urinary protein profiling by liquid chromatography/tandem mass spectrometry: ADAM28 is overexpressed in bladder transitional cell carcinoma. Rapid Commun Mass Spectrom, 2011. 25(19): p. 2851-62.
    112. Soloway, M.S., et al., Use of a new tumor marker, urinary NMP22, in the detection of occult or rapidly recurring transitional cell carcinoma of the urinary tract following surgical treatment. J Urol, 1996. 156(2 Pt 1): p. 363-7.
    113. Schmetter, B.S., et al., A multicenter trial evaluation of the fibrin/fibrinogen degradation products test for detection and monitoring of bladder cancer. J Urol, 1997. 158(3 Pt 1): p. 801-5.
    114. Buttram, V.C., Jr. and R.C. Reiter, Uterine leiomyomata: etiology, symptomatology, and management. Fertil Steril, 1981. 36(4): p. 433-45.
    115. Ligon, A.H. and C.C. Morton, Leiomyomata: heritability and cytogenetic studies. Hum Reprod Update, 2001. 7(1): p. 8-14.
    116. Vu, K., et al., Cellular proliferation, estrogen receptor, progesterone receptor, and bcl-2 expression in GnRH agonist-treated uterine leiomyomas. Hum Pathol, 1998. 29(4): p. 359-63.
    117. Ahn, W.S., et al., Targeted cellular process profiling approach for uterine leiomyoma using cDNA microarray, proteomics and gene ontology analysis. Int J Exp Pathol, 2003. 84(6): p. 267-79.
    118. Li, D., et al., Pancreatic cancer. Lancet, 2004. 363(9414): p. 1049-57.
    119. Lage, H., An overview of cancer multidrug resistance: a still unsolved problem. Cell Mol Life Sci, 2008. 65(20): p. 3145-67.
    120. Shah, A.N., et al., Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol, 2007. 14(12): p. 3629-37.
    121. Retracted: Downregulation of ADAM10 expression inhibits metastasis and invasiveness of human hepatocellular carcinoma HepG2 cells. Biomed Res Int, 2014. 2014: p. 308263.
    122. Kaipparettu, B.A., Y. Ma, and L.J. Wong, Functional effects of cancer mitochondria on energy metabolism and tumorigenesis: utility of transmitochondrial cybrids. Ann N Y Acad Sci, 2010. 1201: p. 137-46.
    123. Verma, M., et al., Proteomic analysis of cancer-cell mitochondria. Nat Rev Cancer, 2003. 3(10): p. 789-95.
    124. Gaude, E. and C. Frezza, Defects in mitochondrial metabolism and cancer. Cancer Metab, 2014. 2: p. 10.
    125. Chen, C.C., et al., Hemopexin is up-regulated in plasma from type 1 diabetes mellitus patients: Role of glucose-induced ROS. J Proteomics, 2012. 75(12): p. 3760-77.
    126. Barani, J., et al., Inflammatory mediators are associated with 1-year mortality in critical limb ischemia. J Vasc Surg, 2005. 42(1): p. 75-80.
    127. Bertz, L., et al., Are there differences of inflammatory bio-markers between diabetic and non-diabetic patients with critical limb ischemia? Int Angiol, 2006. 25(4): p. 370-7.
    128. Martin, M., et al., Complement activation and plasma levels of C4b-binding protein in critical limb ischemia patients. J Vasc Surg, 2009. 50(1): p. 100-6.
    129. Marfella, R., et al., Use of a non-specific immunomodulation therapy as a therapeutic vasculogenesis strategy in no-option critical limb ischemia patients. Atherosclerosis, 2010. 208(2): p. 473-9.
    130. Brechot, N., et al., Modulation of macrophage activation state protects tissue from necrosis during critical limb ischemia in thrombospondin-1-deficient mice. PLoS One, 2008. 3(12): p. e3950.
    131. Raza-Ahmad, A., Fibrinogen: a diagnostic marker for early ischemia. Biotech Histochem, 1994. 69(5): p. 268-72.
    132. Xiaohong, Z., et al., The contrast of immunohistochemical studies of myocardial fibrinogen and myoglobin in early myocardial ischemia in rats. Leg Med (Tokyo), 2002. 4(1): p. 47-51.
    133. Balmer, H., et al., Balloon angioplasty in chronic critical limb ischemia: factors affecting clinical and angiographic outcome. J Endovasc Ther, 2002. 9(4): p. 403-10.
    134. Brea, D., et al., Usefulness of haptoglobin and serum amyloid A proteins as biomarkers for atherothrombotic ischemic stroke diagnosis confirmation. Atherosclerosis, 2009. 205(2): p. 561-7.
    135. Lee, M.Y., et al., Upregulation of haptoglobin in reactive astrocytes after transient forebrain ischemia in rats. J Cereb Blood Flow Metab, 2002. 22(10): p. 1176-80.
    136. Lee, C.W., et al., Plasma haptoglobin concentrations are elevated in patients with coronary artery disease. PLoS One, 2013. 8(10): p. e76817.
    137. Cid, M.C., et al., Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vasculitis. J Clin Invest, 1993. 91(3): p. 977-85.
    138. Yin, H., L. Chao, and J. Chao, Kallikrein/kinin protects against myocardial apoptosis after ischemia/reperfusion via Akt-glycogen synthase kinase-3 and Akt-Bad.14-3-3 signaling pathways. J Biol Chem, 2005. 280(9): p. 8022-30.
    139. Saez-Valero, J., C. Gonzalez-Garcia, and V. Cena, Acetylcholinesterase activity and molecular isoform distribution are altered after focal cerebral ischemia. Brain Res Mol Brain Res, 2003. 117(2): p. 240-4.
    140. Williams, R.A. and S.E. Wilson, Origin of increased serum alkaline phosphatase in colon ischemia. Surg Forum, 1979. 30: p. 370-2.
    141. Bonakdarpour, A., et al., Serum alkaline phosphatase and glutamic oxalacetic transaminase in experimental intestinal ischemia. J Surg Res, 1976. 21(6): p. 409-13.
    142. Verges, B.L., et al., Macrovascular disease is associated with increased plasma apolipoprotein A-IV levels in NIDDM. Diabetes, 1997. 46(1): p. 125-32.
    143. Beinrohr, L., et al., C1, MBL-MASPs and C1-inhibitor: novel approaches for targeting complement-mediated inflammation. Trends Mol Med, 2008. 14(12): p. 511-21.
    144. Cao, F., et al., Up-regulation of syntaxin1 in ischemic cortex after permanent focal ischemia in rats. Brain Res, 2009. 1272: p. 52-61.
    145. Jin, Y. and J.X. She, Novel biomarkers in type 1 diabetes. Rev Diabet Stud, 2012. 9(4): p. 224-35.
    146. Targher, G., et al., Hemostatic disorders in type 1 diabetes mellitus. Semin Thromb Hemost, 2011. 37(1): p. 58-65.
    147. Smith, A. and W.T. Morgan, Hemopexin-mediated heme transport to the liver. Evidence for a heme-binding protein in liver plasma membranes. J Biol Chem, 1985. 260(14): p. 8325-9.
    148. Madian, A.G., et al., Differential carbonylation of proteins as a function of in vivo oxidative stress. J Proteome Res, 2011. 10(9): p. 3959-72.
    149. Frantikova, V., et al., Amino acid sequence of the N-terminal region of human hemopexin. FEBS Lett, 1984. 178(2): p. 213-6.
    150. Hatzichristodoulou, G., et al., Nuclear matrix protein 22 for bladder cancer detection: comparative analysis of the BladderChek(R) and ELISA. Anticancer Res, 2012. 32(11): p. 5093-7.
    151. Urquidi, V., et al., Diagnostic potential of urinary alpha1-antitrypsin and apolipoprotein E in the detection of bladder cancer. J Urol, 2012. 188(6): p. 2377-83.
    152. Albores-Saavedra, J., et al., Sinus histiocytosis of pelvic lymph nodes after hip replacement. A histiocytic proliferation induced by cobalt-chromium and titanium. Am J Surg Pathol, 1994. 18(1): p. 83-90.
    153. Li, H., et al., Identification of Apo-A1 as a biomarker for early diagnosis of bladder transitional cell carcinoma. Proteome Sci, 2011. 9(1): p. 21.
    154. Bellmunt, J., et al., Prognostic factors in patients with advanced transitional cell carcinoma of the urothelial tract experiencing treatment failure with platinum-containing regimens. J Clin Oncol, 2010. 28(11): p. 1850-5.
    155. Perez-Montiel, M.D., et al., Differential expression of smooth muscle myosin, smooth muscle actin, h-caldesmon, and calponin in the diagnosis of myofibroblastic and smooth muscle lesions of skin and soft tissue. Am J Dermatopathol, 2006. 28(2): p. 105-11.
    156. Liu, H., et al., Identification of cervical cancer proteins associated with treatment with paclitaxel and cisplatin in patients. Int J Gynecol Cancer, 2011. 21(8): p. 1452-7.
    157. Marshall, R.J. and S.G. Braye, alpha-1-Antitrypsin, alpha-1-antichymotrypsin, actin, and myosin in uterine sarcomas. Int J Gynecol Pathol, 1985. 4(4): p. 346-54.
    158. Dieplinger, H., et al., Afamin and apolipoprotein A-IV: novel protein markers for ovarian cancer. Cancer Epidemiol Biomarkers Prev, 2009. 18(4): p. 1127-33.
    159. Jackson, D., et al., Proteomic profiling identifies afamin as a potential biomarker for ovarian cancer. Clin Cancer Res, 2007. 13(24): p. 7370-9.
    160. Jeong, D.H., et al., Plasma proteomic analysis of patients with squamous cell carcinoma of the uterine cervix. J Gynecol Oncol, 2008. 19(3): p. 173-80.
    161. Rader, D.J., Regulation of reverse cholesterol transport and clinical implications. Am J Cardiol, 2003. 92(4A): p. 42J-49J.
    162. Chen, Y.T., et al., Discovery of novel bladder cancer biomarkers by comparative urine proteomics using iTRAQ technology. J Proteome Res, 2010. 9(11): p. 5803-15.
    163. Kelly, P., et al., Detection of oesophageal cancer biomarkers by plasma proteomic profiling of human cell line xenografts in response to chemotherapy. Br J Cancer, 2010. 103(2): p. 232-8.
    164. Wang, X., et al., Characterization of apolipoprotein A-I as a potential biomarker for cholangiocarcinoma. Eur J Cancer Care (Engl), 2009. 18(6): p. 625-35.
    165. Kozak, K.R., et al., Characterization of serum biomarkers for detection of early stage ovarian cancer. Proteomics, 2005. 5(17): p. 4589-96.
    166. Tachibana, M., et al., Expression of apolipoprotein A1 in colonic adenocarcinoma. Anticancer Res, 2003. 23(5b): p. 4161-7.
    167. Chong, P.K., et al., Reduced plasma APOA1 level is associated with gastric tumor growth in MKN45 mouse xenograft model. J Proteomics, 2010. 73(8): p. 1632-40.
    168. Guo, Q., et al., Elevated levels of plasma fibrinogen in patients with pancreatic cancer: possible role of a distant metastasis predictor. Pancreas, 2009. 38(3): p. e75-9.
    169. Takeuchi, H., et al., Pretreatment plasma fibrinogen level correlates with tumor progression and metastasis in patients with squamous cell carcinoma of the esophagus. J Gastroenterol Hepatol, 2007. 22(12): p. 2222-7.
    170. Camerer, E., et al., Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood, 2004. 104(2): p. 397-401.
    171. Staton, C.A., N.J. Brown, and C.E. Lewis, The role of fibrinogen and related fragments in tumour angiogenesis and metastasis. Expert Opin Biol Ther, 2003. 3(7): p. 1105-20.
    172. Palumbo, J.S. and J.L. Degen, Fibrinogen and tumor cell metastasis. Haemostasis, 2001. 31 Suppl 1: p. 11-5.
    173. Walsh, N., et al., Aldehyde dehydrogenase 1A1 and gelsolin identified as novel invasion-modulating factors in conditioned medium of pancreatic cancer cells. J Proteomics, 2008. 71(5): p. 561-71.
    174. Sanchez-Carbayo, M., et al., Genomic and proteomic profiles reveal the association of gelsolin to TP53 status and bladder cancer progression. Am J Pathol, 2007. 171(5): p. 1650-8.
    175. Yang, J., et al., Prognostic significance of MCM2, Ki-67 and gelsolin in non-small cell lung cancer. BMC Cancer, 2006. 6: p. 203.
    176. Habeck, M., Gelsolin: a new marker for breast cancer? Mol Med Today, 1999. 5(12): p. 503.
    177. Andersen, J.D., et al., Leucine-rich alpha-2-glycoprotein-1 is upregulated in sera and tumors of ovarian cancer patients. J Ovarian Res, 2010. 3: p. 21.
    178. Kakisaka, T., et al., Plasma proteomics of pancreatic cancer patients by multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis (2D-DIGE): up-regulation of leucine-rich alpha-2-glycoprotein in pancreatic cancer. J Chromatogr B Analyt Technol Biomed Life Sci, 2007. 852(1-2): p. 257-67.
    179. Kim, B.K., et al., The multiplex bead array approach to identifying serum biomarkers associated with breast cancer. Breast Cancer Res, 2009. 11(2): p. R22.
    180. Bijian, K., et al., Serum proteomic approach for the identification of serum biomarkers contributed by oral squamous cell carcinoma and host tissue microenvironment. J Proteome Res, 2009. 8(5): p. 2173-85.
    181. Chatterji, B. and J. Borlak, Serum proteomics of lung adenocarcinomas induced by targeted overexpression of c-raf in alveolar epithelium identifies candidate biomarkers. Proteomics, 2007. 7(21): p. 3980-91.
    182. Brown, L.M., et al., Quantitative and qualitative differences in protein expression between papillary thyroid carcinoma and normal thyroid tissue. Mol Carcinog, 2006. 45(8): p. 613-26.
    183. Kalkunte, S., et al., Inhibition of angiogenesis by vitamin D-binding protein: characterization of anti-endothelial activity of DBP-maf. Angiogenesis, 2005. 8(4): p. 349-60.
    184. Gumireddy, K., C.D. Reddy, and N. Swamy, Mitogen-activated protein kinase pathway mediates DBP-maf-induced apoptosis in RAW 264.7 macrophages. J Cell Biochem, 2003. 90(1): p. 87-96.
    185. Kondo, Y., et al., Clinicopathological significance of carbonic anhydrase 9, glucose transporter-1, Ki-67 and p53 expression in oral squamous cell carcinoma. Oncol Rep, 2011. 25(5): p. 1227-33.
    186. Peridis, S., et al., Carbonic anhydrase-9 expression in head and neck cancer: a meta-analysis. Eur Arch Otorhinolaryngol, 2011. 268(5): p. 661-70.
    187. Zheng, G., et al., Identification of carbonic anhydrase 9 as a contributor to pingyangmycin-induced drug resistance in human tongue cancer cells. FEBS J, 2010. 277(21): p. 4506-18.
    188. Said, H.M., et al., Modulation of carbonic anhydrase 9 (CA9) in human brain cancer. Curr Pharm Des, 2010. 16(29): p. 3288-99.
    189. Kato, Y., et al., Expression of a hypoxia-associated protein, carbonic anhydrase-9, correlates with malignant phenotypes of gastric carcinoma. Digestion, 2010. 82(4): p. 246-51.
    190. Hong, Y.S., et al., Carbonic anhydrase 9 is a predictive marker of survival benefit from lower dose of bevacizumab in patients with previously treated metastatic colorectal cancer. BMC Cancer, 2009. 9: p. 246.
    191. Soini, Y., et al., MnSOD expression is less frequent in tumour cells of invasive breast carcinomas than in in situ carcinomas or non-neoplastic breast epithelial cells. J Pathol, 2001. 195(2): p. 156-62.
    192. Giovannetti, E., et al., Pharmacogenetics of anticancer drug sensitivity in pancreatic cancer. Mol Cancer Ther, 2006. 5(6): p. 1387-95.
    193. Nakahira, S., et al., Involvement of ribonucleotide reductase M1 subunit overexpression in gemcitabine resistance of human pancreatic cancer. Int J Cancer, 2007. 120(6): p. 1355-63.
    194. Jordheim, L.P., et al., Increased expression of the large subunit of ribonucleotide reductase is involved in resistance to gemcitabine in human mammary adenocarcinoma cells. Mol Cancer Ther, 2005. 4(8): p. 1268-76.
    195. Davidson, J.D., et al., An increase in the expression of ribonucleotide reductase large subunit 1 is associated with gemcitabine resistance in non-small cell lung cancer cell lines. Cancer Res, 2004. 64(11): p. 3761-6.
    196. Czarnecka, A.M., et al., Mitochondrial NADH-dehydrogenase polymorphisms as sporadic breast cancer risk factor. Oncol Rep, 2010. 23(2): p. 531-5.
    197. Gogvadze, V., S. Orrenius, and B. Zhivotovsky, Mitochondria in cancer cells: what is so special about them? Trends Cell Biol, 2008. 18(4): p. 165-73.
    198. Timms, J.F. and R. Cramer, Difference gel electrophoresis. Proteomics, 2008. 8(23-24): p. 4886-97.
    199. Nagaraja, G.M., et al., Gene expression signatures and biomarkers of noninvasive and invasive breast cancer cells: comprehensive profiles by representational difference analysis, microarrays and proteomics. Oncogene, 2006. 25(16): p. 2328-38.
    200. Lai, T.C., et al., Secretomic and proteomic analysis of potential breast cancer markers by two-dimensional differential gel electrophoresis. J Proteome Res, 2010. 9(3): p. 1302-22.
    201. Artal-Sanz, M. and N. Tavernarakis, Prohibitin and mitochondrial biology. Trends Endocrinol Metab, 2009. 20(8): p. 394-401.
    202. Nijtmans, L.G., et al., The mitochondrial PHB complex: roles in mitochondrial respiratory complex assembly, ageing and degenerative disease. Cell Mol Life Sci, 2002. 59(1): p. 143-55.
    203. Kasashima, K., et al., Mitochondrial functions and estrogen receptor-dependent nuclear translocation of pleiotropic human prohibitin 2. J Biol Chem, 2006. 281(47): p. 36401-10.
    204. del Arco, A. and J. Satrustegui, Identification of a novel human subfamily of mitochondrial carriers with calcium-binding domains. J Biol Chem, 2004. 279(23): p. 24701-13.
    205. Lopez-Lazaro, M., The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anticancer Agents Med Chem, 2008. 8(3): p. 305-12.
    206. Rivenzon-Segal, D., et al., Glycolysis and glucose transporter 1 as markers of response to hormonal therapy in breast cancer. Int J Cancer, 2003. 107(2): p. 177-82.
    207. Gatenby, R.A. and R.J. Gillies, Glycolysis in cancer: a potential target for therapy. Int J Biochem Cell Biol, 2007. 39(7-8): p. 1358-66.
    208. Wadhwa, R., et al., Spontaneous immortalization of mouse fibroblasts involves structural changes in senescence inducing protein, mortalin. Biochem Biophys Res Commun, 1993. 197(1): p. 202-6.
    209. Wadhwa, R., et al., Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein. Exp Cell Res, 2002. 274(2): p. 246-53.
    210. Wadhwa, R., et al., Mortalin-MPD (mevalonate pyrophosphate decarboxylase) interactions and their role in control of cellular proliferation. Biochem Biophys Res Commun, 2003. 302(4): p. 735-42.
    211. Feng, Y., et al., Protein profile of human hepatocarcinoma cell line SMMC-7721: identification and functional analysis. World J Gastroenterol, 2007. 13(18): p. 2608-14.
    212. Sawai, M., et al., Growth-inhibitory effects of the ketone body, monoacetoacetin, on human gastric cancer cells with succinyl-CoA: 3-oxoacid CoA-transferase (SCOT) deficiency. Anticancer Res, 2004. 24(4): p. 2213-7.
    213. Miyasaka, Y., et al., Analysis of differentially expressed genes in human hepatocellular carcinoma using suppression subtractive hybridization. Br J Cancer, 2001. 85(2): p. 228-34.
    214. Oh, J.J., et al., Identification of differentially expressed genes associated with HER-2/neu overexpression in human breast cancer cells. Nucleic Acids Res, 1999. 27(20): p. 4008-17.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE