研究生: |
鄭博升 Cheng, Po-Shen |
---|---|
論文名稱: |
三維脈衝式熱管熱交換器性能測試與熱流現象的可視化研究 Performance Investigations for 3D Fin-and-Tube Pulsating Heat Pipe Heat Exchanger and Flow Pattern Analysis with Detailed Visualization Experiments |
指導教授: |
王訓忠
Wong, Shwin-Chung |
口試委員: |
許文震
Sheu, Wen-Jenn 李明蒼 Lee, Ming-Tsang 吳世國 Wu, Shih-Kuo 簡國祥 Chien, Kuo-Hsiang |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 189 |
中文關鍵詞: | 廢熱回收 、脈衝式熱管 、熱管熱交換器 |
外文關鍵詞: | waste heat recovery, pulsating heat pipe, heat pipe heat exchanger |
相關次數: | 點閱:55 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究開發了一種新型脈衝式熱管熱交換器,用於廢熱回收系統,該系統可直接將現有商用鰭管式熱交換器改裝使用,具有低製造成本且結構簡單,並可安裝於系統的熱交換段,作為冷、熱空氣之間的主要熱交換媒介。為了探討熱管內部實際工作流體的熱流現象,本研究根據脈衝式熱管熱交換器的幾何配置,設計了三種不同的玻璃閉迴路脈衝式熱管進行可視化研究,分別為:內徑6 mm的無插板模組、內部插入1 mm厚隔板的平板模組,及雙層立體模組。在無插板模組中,使用水與乙醇作為工作流體,研究結果顯示,這兩種流體在如此管徑下竟能在垂直方向啟動脈衝現象,並意外打破學界普遍認為的Bo數限制。在不同表面張力的作用下,這兩種流體展現出截然不同的熱傳行為。對於內插平板模組,隔板在熱管流道內形成四個角落,這些角落在垂直角度下會加速液柱在蒸發段和冷凝段之間的來回移動,降低啟動脈衝現象的門檻,甚至有助於啟動並穩定水平脈衝現象。在雙層立體模組中,這種多層結構能確保下層熱管在水平角度下始終保有工作流體,並呈現穩定的跨層脈衝式流動行為。脈衝式熱管的可視化研究,將所測得的蒸發段和冷凝段溫度變化與可見的工作流體流動行為相結合,對掌握實際脈衝式熱管熱交換器內部的熱傳行為具有重要參考價值。該廢熱回收系統最多可容納三組脈衝式熱管熱交換器單元,實測結果顯示,在水平角度、使用甲醇的情況下,最大熱交換效率可達0.62。由於甲醇相較於水具有更輕的質量和更低的黏度,儘管其潛熱比水低2.2倍,熱傳導係數也比水低3.51至3.64倍,但甲醇的液柱在蒸發段和冷凝段之間的移動更為迅速,且流阻較低,最終使得熱傳效果更加優異。
A novel, robust, high-performance, simple-constructed triple-layered fin-and-tube pulsating heat pipe heat exchanger (PHPHX) for air-to-air waste heat recovery is fabricated by modifying a commercial product. Three types of glass closed loop PHPs (CLPHPs) are constructed as simplified reproductions for the actual PHPHX unit to carefully investigate the flow characteristics, i.e., non-boarded CLPHP with an inner diameter (ID) of 6 mm, boarded CLPHP inserted with a 1 mm-thick dividing board for the straight section of each tube, and double-layered CLPHP with two tube layers. In the non-boarded CLPHP, water and ethanol as the working fluid are investigated. Two distinct types of heat transfer mode are observed, which are mainly attributed to the effect of surface tension. Both working fluids break the widely spread saying of a limiting Bo, with pulsation activated under the vertical orientation. A horizontal thermosyphon mode is first observed even for ethanol and is recommended for applications due to its leading thermal performance. In the boarded CLPHP, the four longitudinal corners generated by the dividing board accelerate the drain down of the liquid slugs, prompt the threshold of pulsation, even help activate the horizontal pulsation. In the double-layered CLPHP, the horizontal operation is specifically focused on. The pulsation has been proved to not only be activated but maintain stable with the double-layered structure, even for a large-ID design. In general, the measured Te and Tc variations synchronize with the visible flow behavior and be helpful for the realization of the heat transfer phenomena in actual PHPHX systems. The system can accommodate up to three sets of PHPHX units, and the maximum heat-exchanger efficiency is found up to 0.62 with methanol for the filling ratio of 35% under the horizontal orientation. The smooth movement of methanol liquid slugs due to its lighter weight and lower viscosity, surprisingly achieve more heat delivery even with a 2.2 times lower latent heat and a 3.51–3.64 times lower thermal conductivity than water.
[1] I. Johnson, W.T. Choate, A. Davidson, Waste heat recovery. Technology and opportunities in US industry, BCS, Inc., Laurel, MD (United States), 2008.
[2] H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, S.A. Tassou, Waste heat recovery technologies and applications, Therm. Sci. Eng. Prog. 6 (2018) 268–289.
[3] S. Khandekar, M. Schneider, M. Groll, Mathematical modeling of pulsating heat pipes: state of the art and future challenges, Heat Mass Transf. SK Saha SP Venkateshen BVSSS Prasad SS Sadhal Eds Tata McGraw-Hill Publ. Co. New Delhi India (2002) 856–862.
[4] M. Groll, S. Khandekar, Pulsating heat pipes: progress and prospects, in: 2003: pp. 723–730.
[5] S. Khandekar, M. Groll, P. Charoensawan, S. Rittidech, P. Terdtoon, Closed and open loop pulsating heat pipes, in: 2004.
[6] N. Iwata, H. Ogawa, Y. Miyazaki, Temperature-controllable oscillating heat pipe, J. Thermophys. Heat Transf. 25 (2011) 386–392.
[7] H. Yang, S. Khandekar, M. Groll, Operational limit of closed loop pulsating heat pipes, Appl. Therm. Eng. 28 (2008) 49–59.
[8] R.R. Riehl, N. dos Santos, Water-copper nanofluid application in an open loop pulsating heat pipe, Heat Powered Cycles Conf. 2009 42 (2012) 6–10.
[9] F.P. Bretherton, The motion of long bubbles in tubes, J. Fluid Mech. 10 (1961) 166–188.
[10] A. Delil, Pulsating & oscillating heat transfer devices in acceleration environments from microgravity to supergravity, SAE Trans. (2001) 28–43.
[11] R.T. Dobson, T. Harms, Lumped parameter analysis of closed and open oscillatory heat pipes, in: Japan Tokyo, 1999: pp. 137–142.
[12] H. Yang, S. Khandekar, M. Groll, Performance characteristics of pulsating heat pipes as integral thermal spreaders, Int. J. Therm. Sci. 48 (2009) 815–824.
[13] X. Liu, Y. Chen, Fluid flow and heat transfer in flat-plate oscillating heat pipe, Energy Build. 75 (2014) 29–42.
[14] R.K. Sarangi, M.V. Rane, Experimental Investigations for Start up and Maximum Heat Load of Closed Loop Pulsating Heat Pipe, Chem. Civ. Mech. Eng. Tracks 3rd Nirma Univ. Int. Conf. Eng. NUiCONE2012 51 (2013) 683–687.
[15] Q. Li, C. Wang, Y. Wang, Z. Wang, H. Li, C. Lian, Study on the effect of the adiabatic section parameters on the performance of pulsating heat pipes, Appl. Therm. Eng. 180 (2020) 115813.
[16] J. Jo, J. Kim, S.J. Kim, Experimental investigations of heat transfer mechanisms of a pulsating heat pipe, Energy Convers. Manag. 181 (2019) 331–341.
[17] S. Khandekar, A.P. Gautam, P.K. Sharma, Multiple quasi-steady states in a closed loop pulsating heat pipe, Int. J. Therm. Sci. 48 (2009) 535–546.
[18] X. Liu, Y. Chen, M. Shi, Dynamic performance analysis on start-up of closed-loop pulsating heat pipes (CLPHPs), Int. J. Therm. Sci. 65 (2013) 224–233.
[19] V.M. Patel, Gaurav, H.B. Mehta, Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe, Appl. Therm. Eng. 110 (2017) 1568–1577.
[20] Z. Lin, S. Wang, J. Chen, J. Huo, Y. Hu, W. Zhang, Experimental study on effective range of miniature oscillating heat pipes, MNF 2009 Spec. Issue 31 (2011) 880–886.
[21] J. Qu, Q. Wang, Q. Sun, Lower limit of internal diameter for oscillating heat pipes: A theoretical model, Int. J. Therm. Sci. 110 (2016) 174–185.
[22] Z. Deng, Y. Zheng, X. Liu, B. Zhu, Y. Chen, Experimental study on thermal performance of an anti-gravity pulsating heat pipe and its application on heat recovery utilization, Appl. Therm. Eng. 125 (2017) 1368–1378.
[23] F. Shang, Q. Yang, S. Fan, C. Liu, J. Liu, Experimental study on novel pulsating heat pipe radiator for horizontal CPU cooling under different wind speeds, Therm. Sci. 26 (2022) 449–462.
[24] B. Markal, K. Aksoy, The combined effects of filling ratio and inclination angle on thermal performance of a closed loop pulsating heat pipe, Heat Mass Transf. 57 (2021) 751–763.
[25] X. Xiao, Y. He, Q. Wang, Y. Yang, C. Chang, Y. Ji, Heat Transfer Performance of a 3D-Printed Aluminum Flat-Plate Oscillating Heat Pipe Finned Radiator, Nanomaterials 14 (2024).
[26] C.-Y. Tseng, H.-M. Wu, S.-C. Wong, K.-S. Yang, C.-C. Wang, A Novel Thermal Module with 3-D Configuration Pulsating Heat Pipe for High-Flux Applications, Energies 11 (2018).
[27] A. Hathaway, C. Wilson, H. Ma, Experimental investigation of uneven-turn water and acetone oscillating heat pipes, J. Thermophys. Heat Transf. 26 (2012) 115–122.
[28] H. Akachi, F. Polasek, P. Stulc, Pulsating heat pipes∥ Proceeding of 5 th international heat pipe symposium, Melb. Aust. (1996).
[29] H. Akachi, Structure of a heat pipe, US4921041A, 1988.
[30] I. Khazaee, R. Hosseini, S.H. Noie, Experimental investigation of effective parameters and correlation of geyser boiling in a two-phase closed thermosyphon, Appl. Therm. Eng. 30 (2010) 406–412.
[31] X. Wang, Y. Wang, H. Chen, Y. Zhu, A combined CFD/visualization investigation of heat transfer behaviors during geyser boiling in two-phase closed thermosyphon, Int. J. Heat Mass Transf. 121 (2018) 703–714.
[32] H. Jouhara, B. Fadhl, L.C. Wrobel, Three-dimensional CFD simulation of geyser boiling in a two-phase closed thermosyphon, Spec. Issue Hydrog. Fuel Cell Dev. Spec. Issue 8th Int. Conf. Sustain. Energy Environ. Prot. SEEP 2015 11–14 August 2015 Paisley Scotl. UK 41 (2016) 16463–16476.
[33] S. Khandekar, M. Groll, On the definition of pulsating heat pipes: an overview, in: 2003: pp. 707–719.
[34] D. Zhang, Z. He, E. Jiang, C. Shen, J. Zhou, A review on start-up characteristics of the pulsating heat pipe, Heat Mass Transf. 57 (2021) 723–735.
[35] J.L. Xu, X.M. Zhang, Start-up and steady thermal oscillation of a pulsating heat pipe, Heat Mass Transf. 41 (2005) 685–694.
[36] C. Hua, X. Wang, X. Gao, H. Zheng, X. Han, G. Chen, Experimental research on the start-up characteristics and heat transfer performance of pulsating heat pipes with rectangular channels, Appl. Therm. Eng. 126 (2017) 1058–1062.
[37] Y. Zhou, H. Yang, L. Liu, M. Zhang, Y. Wang, Y. Zhang, B. Zhou, Enhancement of start-up and thermal performance in pulsating heat pipe with GO/water nanofluid, Powder Technol. 384 (2021) 414–422.
[38] Y. Zhu, X. Cui, H. Han, S. Sun, The study on the difference of the start-up and heat-transfer performance of the pulsating heat pipe with water−acetone mixtures, Int. J. Heat Mass Transf. 77 (2014) 834–842.
[39] J. Qu, H. Wu, P. Cheng, Start-up, heat transfer and flow characteristics of silicon-based micro pulsating heat pipes, Int. J. Heat Mass Transf. 55 (2012) 6109–6120.
[40] Q. Sun, J. Qu, J. Yuan, H. Wang, Start-up characteristics of MEMS-based micro oscillating heat pipe with and without bubble nucleation, Int. J. Heat Mass Transf. 122 (2018) 515–528.
[41] B. Markal, R. Varol, Experimental investigation and force analysis of flat-plate type pulsating heat pipes having ternary mixtures, Int. Commun. Heat Mass Transf. 121 (2021) 105084.
[42] G.H. Kwon, S.J. Kim, Operational characteristics of pulsating heat pipes with a dual-diameter tube, Int. J. Heat Mass Transf. 75 (2014) 184–195.
[43] S. Khandekar, M. Schneider, P. Schafer, R. Kulenovic, M. Groll, Thermofluid dynamic study of flat-plate closed-loop pulsating heat pipes, Microscale Thermophys. Eng. 6 (2002) 303–317.
[44] B. Holley, A. Faghri, Analysis of pulsating heat pipe with capillary wick and varying channel diameter, Int. J. Heat Mass Transf. 48 (2005) 2635–2651.
[45] Y. He, D. Jiao, G. Pei, X. Hu, L. He, Experimental study on a three-dimensional pulsating heat pipe with tandem tapered nozzles, Exp. Therm. Fluid Sci. 119 (2020) 110201.
[46] E. Jiaqiang, X. Zhao, H. Liu, J. Chen, W. Zuo, Q. Peng, Field synergy analysis for enhancing heat transfer capability of a novel narrow-tube closed oscillating heat pipe, Appl. Energy 175 (2016) 218–228.
[47] J. Wang, Y. Pan, X. Liu, Investigation on start-up and thermal performance of the single-loop pulsating heat pipe with variable diameter, Int. J. Heat Mass Transf. 180 (2021) 121811.
[48] W.-W. Wang, L. Wang, Y. Cai, G.-B. Yang, F.-Y. Zhao, D. Liu, Q.-H. Yu, Thermo-hydrodynamic model and parametric optimization of a novel miniature closed oscillating heat pipe with periodic expansion-constriction condensers, Int. J. Heat Mass Transf. 152 (2020) 119460.
[49] J. Wang, H. Ma, Q. Zhu, Y. Dong, K. Yue, Numerical and experimental investigation of pulsating heat pipes with corrugated configuration, Appl. Therm. Eng. 102 (2016) 158–166.
[50] C.-Y. Tseng, K.-S. Yang, K.-H. Chien, M.-S. Jeng, C.-C. Wang, Investigation of the performance of pulsating heat pipe subject to uniform/alternating tube diameters, Exp. Therm. Fluid Sci. 54 (2014) 85–92.
[51] K.-H. Chien, Y.-T. Lin, Y.-R. Chen, K.-S. Yang, C.-C. Wang, A novel design of pulsating heat pipe with fewer turns applicable to all orientations, Int. J. Heat Mass Transf. 55 (2012) 5722–5728.
[52] K.-S. Yang, Y.-C. Cheng, M.-C. Liu, J.-C. Shyu, Micro pulsating heat pipes with alternate microchannel widths, Appl. Therm. Eng. 83 (2015) 131–138.
[53] G.H. Kwon, S.J. Kim, Experimental investigation on the thermal performance of a micro pulsating heat pipe with a dual-diameter channel, Int. J. Heat Mass Transf. 89 (2015) 817–828.
[54] J. Lim, S.J. Kim, Effect of a channel layout on the thermal performance of a flat plate micro pulsating heat pipe under the local heating condition, Int. J. Heat Mass Transf. 137 (2019) 1232–1240.
[55] D.S. Jang, J.S. Lee, J.H. Ahn, D. Kim, Y. Kim, Flow patterns and heat transfer characteristics of flat plate pulsating heat pipes with various asymmetric and aspect ratios of the channels, Appl. Therm. Eng. 114 (2017) 211–220.
[56] B. Markal, A. Candere, M. Avci, O. Aydin, Investigation of flat plate type pulsating heat pipes via flow visualization-assisted experiments: Effect of cross sectional ratio, Int. Commun. Heat Mass Transf. 125 (2021) 105289.
[57] N. Bhuwakietkumjohn, S. Rittidech, Internal flow patterns on heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves using ethanol and a silver nano-ethanol mixture, Exp. Therm. Fluid Sci. 34 (2010) 1000–1007.
[58] N. Iwata, Y. Miyazaki, S. Yasuda, H. Ogawa, Thermal performance and flexibility evaluation of metallic micro oscillating heat pipe for thermal strap, Appl. Therm. Eng. 197 (2021) 117342.
[59] S.M. Thompson, H.B. Ma, C. Wilson, Investigation of a flat-plate oscillating heat pipe with Tesla-type check valves, Exp. Therm. Fluid Sci. 35 (2011) 1265–1273.
[60] S.F. de Vries, D. Florea, F.G.A. Homburg, A.J.H. Frijns, Design and operation of a Tesla-type valve for pulsating heat pipes, Int. J. Heat Mass Transf. 105 (2017) 1–11.
[61] M. Ebrahimi, M.B. Shafii, M.A. Bijarchi, Experimental investigation of the thermal management of flat-plate closed-loop pulsating heat pipes with interconnecting channels, Appl. Therm. Eng. 90 (2015) 838–847.
[62] Z. Kang, D. Shou, J. Fan, Numerical study of a novel Single-loop pulsating heat pipe with separating walls within the flow channel, Appl. Therm. Eng. 196 (2021) 117246.
[63] S. Khandekar, P. Charoensawan, M. Groll, P. Terdtoon, Closed loop pulsating heat pipes Part B: visualization and semi-empirical modeling, Appl. Therm. Eng. 23 (2003) 2021–2033.
[64] J.L. Xu, Y.X. Li, T.N. Wong, High speed flow visualization of a closed loop pulsating heat pipe, Int. J. Heat Mass Transf. 48 (2005) 3338–3351.
[65] Z.H. Xue, W. Qu, Experimental and theoretical research on a ammonia pulsating heat pipe: New full visualization of flow pattern and operating mechanism study, Int. J. Heat Mass Transf. 106 (2017) 149–166.
[66] A. Gandomkar, K. Kalan, M. Vandadi, M.B. Shafii, M.H. Saidi, Investigation and visualization of surfactant effect on flow pattern and performance of pulsating heat pipe, J. Therm. Anal. Calorim. 139 (2020) 2099–2107.
[67] D. Zhang, Z. He, J. Guan, S. Tang, C. Shen, Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: An experimental study, Int. J. Heat Mass Transf. 183 (2022) 122100.
[68] P. Charoensawan, S. Khandekar, M. Groll, P. Terdtoon, Closed loop pulsating heat pipes: Part A: parametric experimental investigations, Appl. Therm. Eng. 23 (2003) 2009–2020.
[69] R. Bruce, M. Barba, A. Bonelli, B. Baudouy, Thermal performance of a meter-scale horizontal nitrogen Pulsating Heat Pipe, Cryogenics 93 (2018) 66–74.
[70] M. Barba, R. Bruce, F. Bouchet, A. Bonelli, B. Baudouy, Effect of the thermo-physical properties of the working fluid on the performance of a 1-m long cryogenic horizontal pulsating heat pipe, Int. J. Heat Mass Transf. 187 (2022) 122458.
[71] N. Kammuang-Lue, P. Sakulchangsatjatai, P. Terdtoon, Effect of working fluids and internal diameters on thermal performance of vertical and horizontal closed-loop pulsating heat pipes with multiple heat sources, Therm. Sci. 20 (2016) 77–87.
[72] M. Mameli, L. Araneo, S. Filippeschi, L. Marelli, R. Testa, M. Marengo, Thermal response of a closed loop pulsating heat pipe under a varying gravity force, Int. J. Therm. Sci. 80 (2014) 11–22.
[73] T. Dixit, G. Authelet, C. Mailleret, F. Gouit, V. Stepanov, B. Baudouy, High performance and working stability of an 18 W class neon pulsating heat pipe in vertical/horizontal orientation, Cryogenics 132 (2023) 103670.
[74] P. Charoensawan, P. Terdtoon, Thermal performance of horizontal closed-loop oscillating heat pipes, Appl. Therm. Eng. 28 (2008) 460–466.
[75] V. Ayel, L. Araneo, A. Scalambra, M. Mameli, C. Romestant, A. Piteau, M. Marengo, S. Filippeschi, Y. Bertin, Experimental study of a closed loop flat plate pulsating heat pipe under a varying gravity force, Int. J. Therm. Sci. 96 (2015) 23–34.
[76] Y.F. Maydanik, V.I. Dmitrin, V.G. Pastukhov, Compact cooler for electronics on the basis of a pulsating heat pipe, Appl. Therm. Eng. 29 (2009) 3511–3517.
[77] B. Markal, R. Varol, Thermal investigation and flow pattern analysis of a closed-loop pulsating heat pipe with binary mixtures, J. Braz. Soc. Mech. Sci. Eng. 42 (2020) 549.
[78] C. Jung, J. Lim, S.J. Kim, Fabrication and evaluation of a high-performance flexible pulsating heat pipe hermetically sealed with metal, Int. J. Heat Mass Transf. 149 (2020) 119180.
[79] E. Sedighi, A. Amarloo, M.B. Shafii, Experimental investigation of the thermal characteristics of single-turn pulsating heat pipes with an extra branch, Int. J. Therm. Sci. 134 (2018) 258–268.
[80] M. Mameli, V. Manno, S. Filippeschi, M. Marengo, Thermal instability of a Closed Loop Pulsating Heat Pipe: Combined effect of orientation and filling ratio, Exp. Therm. Fluid Sci. 59 (2014) 222–229.
[81] C.-Y. Tseng, K.-S. Yang, C.-C. Wang, Non-Uniform Three-Dimensional Pulsating Heat Pipe for Anti-Gravity High-Flux Applications, Energies 13 (2020).
[82] J. Qu, J. Zhao, Z. Rao, Experimental investigation on thermal performance of multi-layers three-dimensional oscillating heat pipes, Int. J. Heat Mass Transf. 115 (2017) 810–819.
[83] J. Qu, A. Zuo, H. Liu, J. Zhao, Z. Rao, Three-dimensional oscillating heat pipes with novel structure for latent heat thermal energy storage application, Appl. Therm. Eng. 187 (2021) 116574.
[84] S.M. Thompson, P. Cheng, H.B. Ma, An experimental investigation of a three-dimensional flat-plate oscillating heat pipe with staggered microchannels, Int. J. Heat Mass Transf. 54 (2011) 3951–3959.
[85] S.M. Thompson, H.B. Ma, R.A. Winholtz, C. Wilson, Experimental Investigation of Miniature Three-Dimensional Flat-Plate Oscillating Heat Pipe, J. Heat Transf. 131 (2009).
[86] Z. Wan, X. Wang, C. Feng, Heat transfer performances of the capillary loop pulsating heat pipes with spring-loaded check valve, Appl. Therm. Eng. 167 (2020) 114803.
[87] C. Feng, Z. Wan, H. Mo, H. Tang, L. Lu, Y. Tang, Heat transfer characteristics of a novel closed-loop pulsating heat pipe with a check valve, Appl. Therm. Eng. 141 (2018) 558–564.
[88] C.D. Smoot, H.B. Ma, Experimental Investigation of a Three-Layer Oscillating Heat Pipe, J. Heat Transf. 136 (2014).
[89] O.T. Ibrahim, J.G. Monroe, S.M. Thompson, N. Shamsaei, H. Bilheux, A. Elwany, L. Bian, An investigation of a multi-layered oscillating heat pipe additively manufactured from Ti-6Al-4V powder, Int. J. Heat Mass Transf. 108 (2017) 1036–1047.
[90] H. Wang, J. Qu, Y. Peng, Q. Sun, Heat transfer performance of a novel tubular oscillating heat pipe with sintered copper particles inside flat-plate evaporator and high-power LED heat sink application, Energy Convers. Manag. 189 (2019) 215–222.
[91] J. Qu, J. Zhao, Z. Rao, Experimental investigation on the thermal performance of three-dimensional oscillating heat pipe, Int. J. Heat Mass Transf. 109 (2017) 589–600.
[92] L. Pagliarini, L. Cattani, M. Mameli, S. Filippeschi, F. Bozzoli, S. Rainieri, Global and local heat transfer behaviour of a three-dimensional Pulsating Heat Pipe: combined effect of the heat load, orientation and condenser temperature, Appl. Therm. Eng. 195 (2021) 117144.
[93] B. Borgmeyer, C. Wilson, R.A. Winholtz, H.B. Ma, D. Jacobson, D. Hussey, Heat Transport Capability and Fluid Flow Neutron Radiography of Three-Dimensional Oscillating Heat Pipes, J. Heat Transf. 132 (2010).
[94] C. Yu, Y. Ji, Y. Li, Z. Liu, L. Chu, H. Kuang, Z. Wang, A three-dimensional oscillating heat pipe filled with liquid metal and ammonia for high-power and high-heat-flux dissipation, Int. J. Heat Mass Transf. 194 (2022) 123096.
[95] Y.-Z. Ling, X.-S. Zhang, F. Wang, X.-H. She, Performance study of phase change materials coupled with three-dimensional oscillating heat pipes with different structures for electronic cooling, Renew. Energy 154 (2020) 636–649.
[96] C. Czajkowski, A.I. Nowak, S. Pietrowicz, Flower Shape Oscillating Heat Pipe – A novel type of oscillating heat pipe in a rotary system of coordinates – An experimental investigation, Appl. Therm. Eng. 179 (2020) 115702.
[97] J. Liu, F. Shang, K. Yang, C. Liu, Y. Wu, Study on application technology of pulsating heat pipe, E3S Web Conf 248 (2021).
[98] Y.-Z. Ling, X.-S. Zhang, X. Wang, Study of flow characteristics of an oscillating heat pipe, Appl. Therm. Eng. 160 (2019) 113995.
[99] Y.-Z. Ling, X.-H. She, X.-S. Zhang, T.-T. Chen, X.-R. Lin, J.-K. Feng, A PCM-based thermal management system combining three-dimensional pulsating heat pipe with forced-air cooling, Appl. Therm. Eng. 213 (2022) 118732.
[100] X. Xu, X. Zhang, Finite time thermodynamics analysis and research of pulsating heat pipe cold storage device, Energy Storage Sav. 1 (2022) 33–43.
[101] J. Qu, Z. Ke, A. Zuo, Z. Rao, Experimental investigation on thermal performance of phase change material coupled with three-dimensional oscillating heat pipe (PCM/3D-OHP) for thermal management application, Int. J. Heat Mass Transf. 129 (2019) 773–782.
[102] S. Rittidech, W. Dangeton, S. Soponronnarit, Closed-ended oscillating heat-pipe (CEOHP) air-preheater for energy thrift in a dryer, Appl. Energy 81 (2005) 198–208.
[103] P. Meena, S. Rittidech, N. Poomsa-ad, Closed-loop oscillating heat-pipe with check valves (CLOHP/CVs) air-preheater for reducing relative humidity in drying systems, Appl. Energy 84 (2007) 363–373.
[104] S. Khandekar, Pulsating heat pipe based heat exchangers, in: 2010: pp. 2–5.
[105] H. Yang, J. Wang, N. Wang, F. Yang, Experimental study on a pulsating heat pipe heat exchanger for energy saving in air-conditioning system in summer, Energy Build. 197 (2019) 1–6.
[106] K.-S. Yang, M.-Y. Jiang, C.-Y. Tseng, S.-K. Wu, J.-C. Shyu, Experimental investigation on the thermal performance of pulsating heat pipe heat exchangers, Energies 13 (2020) 269.
[107] Y.H. Im, J.Y. Lee, T.I. Ahn, Y.J. Youn, Operational characteristics of oscillating heat pipe charged with R-134a for heat recovery at low temperature, Int. J. Heat Mass Transf. 196 (2022) 123231.
[108] G. Mahajan, S.M. Thompson, H. Cho, Energy and cost savings potential of oscillating heat pipes for waste heat recovery ventilation, Energy Rep. 3 (2017) 46–53.
[109] S. Rittidech, S. Wannapakne, Experimental study of the performance of a solar collector by closed-end oscillating heat pipe (CEOHP), Appl. Therm. Eng. 27 (2007) 1978–1985.
[110] Y. Yang, H. Xian, D. Liu, C. Chen, X. Du, Investigation on the Feasibility of Oscillating-Flow Heat Pipe Applied in the Solar Collector, Int. J. Green Energy 6 (2009) 426–436.
[111] R.J. Xu, X.H. Zhang, R.X. Wang, S.H. Xu, H.S. Wang, Experimental investigation of a solar collector integrated with a pulsating heat pipe and a compound parabolic concentrator, Energy Convers. Manag. 148 (2017) 68–77.
[112] P. Khalilmoghadam, A. Rajabi-Ghahnavieh, M.B. Shafii, A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe, Renew. Energy 163 (2021) 2115–2127.
[113] A. Nuntaphan, S. Vithayasai, N. Vorayos, N. Vorayos, T. Kiatsiriroat, Use of oscillating heat pipe technique as extended surface in wire-on-tube heat exchanger for heat transfer enhancement, Int. Commun. Heat Mass Transf. 37 (2010) 287–292.
[114] T. Samana, T. Kiatsiriroat, A. Nuntaphan, Air-Side Performance Analysis of a Wire-on-Tube Heat Exchanger With an Oscillating Heat Pipe as an Extended Surface Under Natural Convection Conditions, Heat Transf. Eng. 33 (2012) 1033–1039.
[115] H.J. Mosleh, M.A. Bijarchi, M.B. Shafii, Experimental and numerical investigation of using pulsating heat pipes instead of fins in air-cooled heat exchangers, Energy Convers. Manag. 181 (2019) 653–662.
[116] P.-S. Cheng, S.-C. Wong, S.-K. Wu, Performance tests for 3-D Fin-and-Tube heat pipe modified from commercial heat exchanger product for various working fluids, Int. J. Heat Mass Transf. 194 (2022) 123083.
[117] X. Cui, Y. Zhu, Z. Li, S. Shun, Combination study of operation characteristics and heat transfer mechanism for pulsating heat pipe, Appl. Therm. Eng. 65 (2014) 394–402.
[118] P.-S. Cheng, S.-C. Wong, S.-K. Wu, Pulsation incitation and performance investigations for 3D Fin-and-Tube heat pipe heat exchanger by inserting dividing boards for various working fluids, Int. J. Heat Mass Transf. 200 (2023) 123461.
[119] C. Czajkowski, A.I. Nowak, A. Ochman, S. Pietrowicz, Flower Shaped Oscillating Heat Pipe at the thermosyphon condition: Performance at different rotational speeds, filling ratios, and heat supplies, Appl. Therm. Eng. 212 (2022) 118540.
[120] P.-S. Cheng, S.-C. Wong, S.-K. Wu, Heat Transfer Phenomena and Performance Investigations for 3D Fin-and-Tube Pulsating Heat Pipe Heat Exchanger under Vertical and Horizontal Orientations, (2024).
[121] P.-S. Cheng, S.-C. Wong, Detailed visualization experiments on the start-up process and stable operation of double-layered pulsating heat pipes under vertical and horizontal orientations, Int. J. Heat Mass Transf. 231 (2024) 125905.
[122] R.J. Moffat, Describing the uncertainties in experimental results, Exp. Therm. Fluid Sci. 1 (1988) 3–17.
[123] X. Quan, P. Cheng, H. Wu, Transition from annular flow to plug/slug flow in condensation of steam in microchannels, Int. J. Heat Mass Transf. 51 (2008) 707–716.
[124] N. Saha, P.K. Das, P.K. Sharma, Influence of process variables on the hydrodynamics and performance of a single loop pulsating heat pipe, Int. J. Heat Mass Transf. 74 (2014) 238–250.
[125] S. Zhang, Y. Rabin, Y. Yang, M. Asheghi, Nanoscale Calorimetry Using a Suspended Bridge Configuration, J. Microelectromechanical Syst. 16 (2007) 861–871.
[126] B.Y. Tong, T.N. Wong, K.T. Ooi, Closed-loop pulsating heat pipe, Appl. Therm. Eng. 21 (2001) 1845–1862.
[127] R. Perna, M. Abela, M. Mameli, A. Mariotti, L. Pietrasanta, M. Marengo, S. Filippeschi, Flow characterization of a pulsating heat pipe through the wavelet analysis of pressure signals, Appl. Therm. Eng. 171 (2020) 115128.
[128] H. Teng, P. Cheng, T.S. Zhao, Instability of condensate film and capillary blocking in small-diameter-thermosyphon condensers, Int. J. Heat Mass Transf. 42 (1999) 3071–3083.
[129] P.-S. Cheng, S.-C. Wong, Detailed visualization experiments on the start-up process and stable operation of pulsating heat pipes: Effects of internal diameter, Int. J. Heat Fluid Flow 106 (2024) 109325.
[130] J. Lee, S.J. Kim, Effect of channel geometry on the operating limit of micro pulsating heat pipes, Int. J. Heat Mass Transf. 107 (2017) 204–212.
[131] T.F. Lin, W.T. Lin, Y.L. Tsay, J.C. Wu, R.J. Shyu, Experimental investigation of geyser boiling in an annular two-phase closed thermosyphon, Int. J. Heat Mass Transf. 38 (1995) 295–307.
[132] J.H. Seo, S. Kang, J. Lee, GEYSER B OILING IN TWO-PHASE CLOSED THERMOSYPHON WITH SMALL DIAMETER, in: Begel House Inc., 2023.
[133] J. Lee, S.J. Kim, Effect of channel geometry on the operating limit of micro pulsating heat pipes, Int. J. Heat Mass Transf. 107 (2017) 204–212.
[134] M. Padilla, R. Revellin, J. Bonjour, Prediction and simulation of two-phase pressure drop in return bends, Int. J. Refrig. 32 (2009) 1776–1783.