簡易檢索 / 詳目顯示

研究生: 黃炳凱
Huang Ping-Kai
論文名稱: 交流磁流式微型泵之設計與分析
指導教授: 王培仁
Wang Pei-Jen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 65
中文關鍵詞: 磁性流體力學勞倫茲力微型泵
外文關鍵詞: MHD, Lorentz Force, Micro-pump
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微機電系統整合微感測器、微致動器、微控制器及微結構等元件於一裝置,以構成具有特定功能之系統,其中,微流體系統是一項極重要之主題,其必須發展的關鍵元件包括:微型閥、微流量感測器、微通道結構、微型泵等。針對微型泵而言,傳統利用薄膜作動而產生機械式開關動作,容易因為壓力降變化而導致閥門磨損,而且薄膜作動將產生脈衝式流動而非連續式,若能夠應用非機械式驅動力以推動流體,則可避免上述問題。故本研究之目的即希望利用電磁場互動所產生之羅倫茲力來推動可導電流體,以省卻不必要之薄膜組件,且利用交流電以避免水溶液電解的問題。
    本研究針對電磁場驅動導電流體流動之理論進行分析,在一維理論分析中,使用那維爾-史脫克方程式推導出包含電磁效應的流場方程式,採用生理食鹽水作為導電流體,建立等效迴路模型。利用電子電路設計分析軟體設計交流放大電路與有限元素軟體設計電磁鐵磁通密度,研究流道尺寸、交流磁場、交流電場和交流電頻率等變異數,討論一可行交流磁流式微型泵參數。


    Micro Electromechanical System technology integrates micro-sensors, micro-actuators, micro-controllers, and micro-structures into a silicon device with specific features as a system. In particular, micro fluid devices have been especially important because many key components, namely valves, flow sensors, channels, and pumps, have been developed for industrial applications in recent years. Among the above components, traditional micro-pumps have employed thin films for generating mechanical motions that induce valve wear due to pressure variations; and, with vibrating thin films the micro-pump cannot deliver continuous flow. Therefore, the objective of this study is to investigate the pumping effects of electromagnetic Lorentz force in electric-conducting liquid driven by alternating current so that electrolysis of fluid can be circumvented.
    This thesis is to study and analyze the electromagnetic Lorentz forces in electric-conducting aqueous saline solutions submerged under alternating magnetic field. In 1-D flow analysis, Navier-Stokes equations are simplified for solving flow field under electromagnetic interactions driven with alternating currents under closed-loop control. Furthermore, electronic circuit analysis software has been used for designing the power operational amplifier circuits together with the magnetic circuits being simulated via Finite Element Method programs. Effects of size on the flow channel, the AC magnetic field, the AC electric field, and the operating frequency have been carefully studied so that conclusions for assessing design parameters for a practical AC operated MHD micro-pump are made.

    目 錄 中英文摘要…………………………………………………………………………. I 誌 謝……………………………………………………………………………….. III 符號單位說明……………………………………………………………………. IV 目 錄………………………………………………………………………………… VI 表目錄……………………………………………………………………………… IX 圖目錄………………………………………………………………………………... X 第一章 緒論……………………………………………………………… 1 1.1背景介紹……………………………………………………………… 1 1.2 文獻回顧……………………………………………………………… 3 1.3 研究目的與方法…………………………………………………… 5 第二章 工作原理與數學模式…………………………………………… 7 2.1 電磁工作原理…………………………………………………………… 7 2.2 交流電磁場流速………………………………………………………… 7 2.3交流電磁場流量………………………………………………………… 10 2.4 哈托曼數與磁雷諾數…………………………………………………… 11 2.5 磁流力學微型泵推力…………………………………………………… 12 2.6 黏滯力對管流的壓降……….……….………………………..………… 13 2.7 電流加熱效應分析……………………………………………………… 13 第三章 實驗設計與規劃…………………………………………………… 19 3.1 磁路設計……………………………………………………………… 19 3.2 流道尺寸分析……………….………………………………………… 22 3.3 交流式電源設計……………………………..………………………… 23 3.4 磁路有限元素法分析…………………………………………………… 31 第四章 數值計算與實驗結果………………………………………… 45 4.1 實驗硬體架構…………………………………………………………… 45 4.2 水溶液電解實驗………………………………………………………… 45 4.3電流加熱效應…………………………………………………………… 46 4.4 水頭壓差計算…………………………………………………………… 46 4.5 流速實驗………………………………………………………………… 47 第五章 結論與討論………………………………………………… 58 5.1 電路設計討論…………………………………………………………… 58 5.2 訊號頻率討論…………………………………………………………… 58 5.3磁場強度討論………………………………………………………… 59 5.4 未來工作………………………………………………………………… 60 參考文獻…………………………………………………………………………… 64 表目錄 表4-1端電壓與氣泡生成時間關係,此時電壓頻率為1K Hz……….…………… 49 表4-2流速與流道電壓、電流關係實驗數據[12]………………………………… 49 圖目錄 圖2-1 電流流過與其垂直之磁場,產生勞倫茲力使管內導電流體流動…………… 15 圖2-2 磁流泵之平板形流道截面示意圖與等效閉迴路電路模型…………………… 15 圖2-3 介於平板間的黏性流…………………………………………………………… 16 圖2-4 流速與哈托曼數間的關係……………………………………………………… 16 圖2-5 流速受磁雷諾數影響…………………………………………………………….. 17 圖2-6磁流動力微型泵示意圖………………………………………………………… 17 圖2-7 平滑導管的摩擦係數…………………………………………………………….. 18 圖3-1 流道高度2 mm,磁通密度0-1 Tesla,最大體積流率變化…………………. 33 圖3-2流道高度2 mm,磁通密度0-1 Tesla,雷諾數變化…………………………. 33 圖3-3交變電磁鐵外形…….…………………………………….………………………. 34 圖3-4 實驗流道………………………………………………………………………… 34 圖3-5 (a)CMRR與(b)PSRR比較………..……………….…………………………….. 35 圖3-6 PA21對外接腳……………………………………………………………………. 35 圖3-7 電壓放大電路……………………………………………….…………………….. 36 圖3-8 PA21放大電路A腳輸出波德圖,粗線為增益波德圖,細線為相位波德圖… 36 圖3-9 PA21放大電路B腳輸出波德圖,粗線為增益波德圖,細線為相位波德圖… 37 圖3-10補償後PA21放大電路A腳輸出波德圖,粗線為增益,細線為相位…………… 37 圖3-11補償後PA21放大電路B腳輸出波德圖,粗線為增益,細線為相位………… 38 圖3-12 輸入與輸出暫態響應比較,粗線為輸出訊號,細線為輸入訊號……………. 38 圖3-13 PA13的等效電路………………………………………………………………... 39 圖3-14 PA13對外接腳……….………………………………………………………….. 39 圖3-15應用PA13放大器之定電流放大電路………………….………………………. 40 圖3-16無補償之定電流放大電路……………………………………………………….. 40 圖3-17補償前輸出電流波德圖,粗線為增益波德圖,細線為相位波德圖…………... 41 圖3-18補償前輸出電壓波德圖,粗線為增益波德圖,細線為相位波德圖………….... 41 圖3-19補償後輸出電流波德圖,粗線為增益波德圖,細線為相位波德圖…………... 42 圖3-20輸出電壓波德圖,粗線為增益波德圖,細線為相位波德圖…………………… 42 圖3-21補償前電磁鐵電流(粗線)與電場(細線)暫態響應…….…………………. 43 圖3-22補償後電磁鐵電流(粗線)與電場(細線)暫態響應……………………….. 43 圖3-23 Ansoft模擬氣隙磁通…………………………………………………………… 44 圖3-24流道高度2 mm,磁通密度0.018 T,電壓強度50 V/m,流道內流速變化 44 圖4-1 差動電壓放大器照片……………………………………………………………... 50 圖4-2定電流放大器照片………………………………………………………………… 50 圖4-3電磁鐵與夾具照片……………….………………………………………………... 51 圖4-4流道照片…………………………..……………………………………………….. 51 圖4-5實驗設備配置圖………………….………………………………………………... 52 圖4-6 端電壓DC2V電解現象照片……..………….……………………………………. 52 圖4-7 端電壓AC40 Vp-p電解現象照片………………………………………………… 53 圖4-8 氣泡生成電流與頻率關係圖……………………………………………………... 53 圖4-9 電流加熱溫升計算值(實線)與實驗值(方點)和時間關係圖………………… 54 圖4-10 水頭壓差計算值…………………………………………………………………. 54 圖4-11 式(2-26)流速計算值與實驗值[12]比較圖……………………………………. 55 圖4-12 最大流速、實驗流速與電流關係圖……………………………………………... 55 圖4-13 頻率1 KHz,電流0.6A,磁場18mT,模擬流道內流動情形………………. 56 圖4-14 Ansoft二維模擬圖………………………………………………………………. 56 圖4-15 氣隙間磁通量……………………………………………………………………. 57 圖4-16 水頭壓減黏滯力壓降與電流關係圖……………………………………………. 57 圖5-1 次厘米等級流道水頭壓減黏滯力壓降與電流關係圖…………………………... 62 圖5-2 增加磁通量B=0.1 T,水頭壓減黏滯力壓降與電流關係圖……………………. 62 圖5-3 氣隙1mm,安匝數480時磁通密度……………………………………………… 63 圖5-4 磁場強度0.33T,流道尺寸800μm×380μm,電流與水頭壓差關係圖……… 63

    [1] R. Zengerle, S. Kluge, M. Richter, and A. Richter, “A bi-directional silicon micropump,” Proceedings of the IEEE 1995 Micro Electro Mechanical Systems Workshop (MEMS’ 95), Jan.29-Feb.2, (1995), pp. 19-24.
    [2] J. Branebjerg, B. Fabius, and P. Gravesen, “Application of miniature analyzers : From microfluidic components to μTAS,” Proceedings of Micro Total Analysis Systems Conference, Nov. 21-22, (1994), pp. 141-151
    [3] M. J. Zdeblick, R. Anderson, and J. Jankowski, “Thermo-pneumatically Actuated Microvalves and Integrated Electro-Fluidic Circuits,” Solid-State Sensor and Actuator Workshop, June 13-16, (1994), pp. 251-255.
    [4] H. T. G. van Lintel, F. C. M. van de Pol, “A piezoelectric micro pump based on micromachining of silicon,” Sensors and Actuators, 15, (1988), pp.153.
    [5] R. M. Moroney, R. M. White, and R. T. Howe, “Ultrasonically induced micro-transport,” Proceedings of the IEEE 1991 Micro Electro Mechanical Systems Workshop (MEMS’91), Jan.30-Feb.2, (1991), pp. 277-282.
    [6] W. Zhang, C.H. Ahn, in: A Bi-Directional Magnetic Micropump on a Silicon Wafer,Solid-State Sensor and Actuator Workshop, Hilton Head, SC, (1996) p. 94
    [7] S. E. Mc Bride, R. M. Moroney, and W. Chiang, “Electrohydrodynamic pumps for high-density microfluidic arrays,” Proceedings of Micro Total Analysis Systems Conference, Oct. 13-16, (1998), pp. 45-48.
    [8] Manz, C.S. Effenhauser, N. Burggraf, D.J. Harrison, K. Seiler, K. Flurri, “Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems”, Journal of Micromechanics and Microengineering 4 (1994) 257-265.
    [9] P.H. Paul, D.W. Arnold, D.J. Rakestraw, “Electrokinetic generationof high pressures using porous microstructure”, Proceedings of Micro Total Analysis Systems Conference, Banff, Canada, Oct. 13–16, (1998), pp. 49–52.
    [10] J. Jang and S. S. Lee, “Theoretical and experimental study of MHD micropump,” Sensors and Actuators 80, (2000), pp.84-89.
    [11] L. Huang, W. Wang, M. C. Murphy, K. Lian and Z. G. Ling, “LIGA fabrication and test of a DC type magneto- hydrodynamic (MHD) micropump,” Microsystem Technologies, Vol. 6, (2000), pp.235-240.
    [12] A. V. Lemoff and A. P. Lee, “An AC magnetohydrodynamic micropump,” Sensors and Actuators B63, (2000), pp.178-185.
    [13] K. X. Qian, S.S. Wang and S.H. Chu, ”Magnetohydrodynamic Blood Pump For Artificial Heart – Design Concepts and Initial Experimental Results,” Biomedical Engineering – Applications, Basis & Communications, Vol.6, No.4, August (1994) pp.564-567.
    [14] 黃于軒, “應用磁場於熔融金屬流速控制之研究,” 國立清華大學動力機械工程研究所碩士論文, (2000)
    [15] Jackson, J. D. (1962) “Classical Electrodynamics,” Wiley, New York.
    [16] 張家源, “微型電磁推動之導電流體控制裝置,” 工業技術研究院委託學術機構研究期中報告, (2001)
    [17] 林上瑜, “應用旋轉磁場於熔融金屬攪拌之研究,” 國立清華大學動力機械工程研究所碩士論文, (2001)
    [18] Robert G. Irvine, “Operation Amplifier Characteristics and Applications,’’ 儒林圖書有限公司, 民國70年
    [19] 田福助, “電化學理論與應用,’’ 新科技書局, 民國76年
    [20] E. C. Fitch and I. T. Hong, “Hydraulic Component Design and Selection,’’ BarDyne Inc., (1997)
    [21] Bruce R. Muson, Donald F. Young and Theodore H. Okiishi, “Fundamentals of Fluid Mechanics 2/e,’’ John Wiley&Sons, (1994)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE