簡易檢索 / 詳目顯示

研究生: 陳柏全
Chen, Po-Chuan
論文名稱: 鈀基磁性多層膜的自旋軌道矩翻轉現象及其類神經運用
Spin-Orbit Torque switching in Pd-based heterostructure and its neuromorphic applications
指導教授: 賴志煌
Lai, Chih-Huang
口試委員: 林秀豪
Lin, Hsiu-Hau
謝嘉民
Shieh, Jia-Min
林文欽
Lin, Wen-Chin
孫元成
Sun, Yuan-Chen
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 127
中文關鍵詞: 磁性隨機存取記憶體自旋軌道矩自旋電子元件類神經運算磁區壁動力學
外文關鍵詞: magnetic random-access memory, spin orbit torque, spintronics, neuromorphic computing, domain wall dynamics
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自旋軌道矩(SOT)自從10年前發現、確認並且證實之後,一直被視為可以用來驅動傳統磁穿隧結(MTJ)的重要運作機制之一。而MTJ也是磁性隨機存取記憶體(MRAM)的重要元件,也因此SOT的運作機制可以在非常快速、避免破壞性寫入的情形下運作MRAM。不過SOT的運作機制並不是完美的,它仍然存在許多需要改進的缺點。首先,SOT仍舊需要大量的電流(或是輸入能量)來完成寫入動作,但是大量的電流對於微縮化的製程來說是不被允許的;另外,如果沒有額外的外加磁場幫助翻轉,SOT的運作機制常常無法獨力完成寫入動作,因此需要複雜的結構設計或是引入特定材料才能完全SOT的獨立寫入運作。換言之,倘若不是非SOT不可的應用方向,其實SOT的運作機制本身競爭力是不夠和其他類型的記憶體比擬的。針對這一方面,其實有不少非常特殊、先進的應用元件是SOT-MRAM可以大展身手的,比如因為具有磁多階儲存(MML)特性,SOT可以呈現非常特殊的憶阻器(memristor)特性,使其記錄的內容不再是數位式的1或0,而是可以根據輸入訊號大小儲存的類比式記憶。同時,由於SOT記憶元件的寫入/讀取的訊號取線通常可以呈現非線性(non-linearity),因此有不少文獻報告可以用作常見的類神經運算,如卷積式類神經網路(CNN)和脈衝時序依賴可塑性(STDP)。
    本篇論文使用一個相當少用在SOT材料結構的金屬材料─鈀(Pd)作為實驗主軸。和其他常見的SOT重金屬材料不同,Pd被預測具有較弱的SOT翻轉效率;但是在本篇論文的第5章,Pd其實可以貢獻一定程度的SOT翻轉效率,並不遜於常見的重金屬材料。另外,Dzyaloshinskii-Moriya效應 (DMI)是在SOT運作機制裡常被用來討論的物理參數,其會大幅影響磁區壁的移動能力、以及整體結構需要施加的輔佐外加磁場強度。Pd/Co介面存在相當弱的DMI,使得磁區壁的移動速度遠低於文獻報告的預期,甚至趨近於停滯。這樣的停滯磁區壁,導致了Pd結構可以產生非常穩定的MML表現,其翻轉現象也不再是快速的磁區壁位移,而是大範圍的生成許多細碎翻轉磁區,並藉由不斷的生成翻轉磁區來完成整體翻轉。而這樣的多階儲存特性除了可以用在類神經計算網路,甚至可以模擬在生物上神經聚落(NP)的特殊現象,使得整體元件具有其特有的運作時脈,而不是一味的追求越快越好。總結藉由引入Pd金屬作為SOT的重要結構材料之一,可以賦予磁性層翻轉許多意料之外的反轉表現行為與更多用途。


    It has been more than 10 years since the first discovery and confirmation of spin-orbit torque (SOT) phenomenon. It could successfully operate conventional magnetic tunneling junction (MTJ) under very fast current pulse with assistance of external field. Not only suitable heavy metal materials but also following device fabrication confirm the advantages and shortcomings of SOT-based magnetic random-access memory (MRAM). For one thing, extremely fast read/write speed and excellent device endurance would cost a huge power consumption which is a serious problem for scaling of transmission line. Another issue comes from the request of external field assistance switching. The possible solution for this defect of switching is the potential ability of magnetic multi-level (MML). In other words, since SOT always needs external assistance for successful operation, multi-functionality becomes the most powerful advantage for SOT mechanism to emphasize on. Meanwhile, resistive behavior originating from MML could be applied to many neuromorphic computation applications such as convolutional neural network or spike-time dependent plasticity.
    In this thesis, Pd is selected as heavy metal material for source of SOT. Unlike conventional heavy metal, Pd was once predicted as a weak SOT source but is later proved to have well performance in chapter 5 of this thesis. Moreover, much weaker Dzyaloshinskii-Moriya interaction (DMI) in the interface of Pd/Co could also induced intriguing phenomenon comparing to common Pt/Co interface. The shortage of DMI could result in poor domain wall (DW) mobility and therefore establishing stable enough MML during SOT switching. When the mobility of DW becomes too slow to even move a little bit, the whole switching process becomes a genuine nucleation dominating switching and the device could therefore mimic the behavior of neuronal population in natural nervous system. In summary, this thesis would cover all SOT switching performance observation on Pd-based magnetic layers, and provide prudent physical explanation for its rare but fascinating performance.

    CHAPTER 1 INTRODUCTION 6 1.1. INTRODUCTION 6 1.2. MOTIVATION 7 1.3. OUTLINE 8 1.3.1. Pd/CoFeB PMA system: another material candidate for SOT switching. 8 1.3.2. Nucleation dominating switching mechanism in Pd/Co/Ta heterostructure: full observation and theoretical approach for it. 8 1.3.3. Neuromorphic application: neuronal population behavior in Pd/Co/Ta 9 CHAPTER 2 BACKGROUND 10 2.1. BASIC KNOWLEDGE: TMR AND MTJ 10 2.1.1. Brief introduction of TMR 10 2.1.2. Modern MTJ and its materials 13 2.1.3. Free layer operations in MTJ 16 2.2. DISCUSSIONS ON SOT SWITCHING 18 2.2.1. First glance at SOT 18 2.2.2. History and discussions on SOT 20 2.2.3. Role of spin Hall angle 23 2.2.4. The contribution of DMI in SOT 27 2.2.5. Influence from other factors: damping and torques 32 2.2.6. SOT switching mechanism: Nucleation 37 2.2.7. SOT switching mechanism: DW motion 40 2.3. QUANTITATIVE ANALYSIS FOR SOT 49 2.3.1. FMR, spin pumping and ISHE 49 2.3.2. Harmonic measurement 53 2.3.3. Loop-shift measurement 55 2.4. NEUROMORPHIC APPLICATION 59 2.4.1. Why “neuromorphic”? 59 2.4.2. Common designs for neural network 65 2.4.3. SOT-MRAM in neuromorphic computing 70 2.5. CONCLUSION AND LOOK FORWARD 74 CHAPTER 3 EXPERIMENTAL TECHNIQUES 75 3.1. THIN FILM DEPOSITION 75 3.2. DEVICE FABRICATION 75 3.3. EXPERIMENTAL MEASUREMENTS AND OBSERVATIONS 76 3.3.1. VSM 76 3.3.2. Electrical measurements 76 3.3.3. Kerr microscope 77 3.3.4. XPS 77 CHAPTER 4 LARGE ENHANCEMENT OF SPIN-ORBIT TORQUES IN PD/COFEB: THE ROLE OF BORON 79 4.1. INTRODUCTION 79 4.2. EXPERIMENTAL METHOD 81 4.3. RESULTS AND DISCUSSIONS 81 4.4. SUMMARY 88 CHAPTER 5 MAGNETIC MULTI-LEVEL THROUGH DOMAIN NUCLEATION 88 5.1. INTRODUCTION 88 5.1.1. Heating effect on switching 89 5.1.2. Geometrical effects 90 5.1.3. Creep behavior of DW 90 5.1.4. Structure design 90 5.1.5. Introduction of special materials 91 5.1.6. Artificial defects 91 5.1.7. Switching through domain nucleation 92 5.2. EXPERIMENTAL METHOD 93 5.3. RESULTS AND DISCUSSION 94 5.3.1. Possible defects 98 5.3.2. DW configuration 99 5.3.3. Existence of WB 100 5.4. SUMMARY 102 CHAPTER 6 SOT DEVICE FOR NEURONAL POPULATION 103 6.1. INTRODUCTION 103 6.2. EXPERIMENTAL METHOD 106 6.3. RESULTS AND DISCUSSION 107 6.4. SUMMARY 111 CHAPTER 7 CONCLUSION 115 CHAPTER 8 REFERENCE 119

    1. Tang, J., et al., Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges. Adv Mater, 2019. 31(49): p. e1902761.
    2. Metaxas, P.J., et al., Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. Phys Rev Lett, 2007. 99(21): p. 217208.
    3. Zhou, J., et al., Spin-Orbit Torque-Induced Domain Nucleation for Neuromorphic Computing. Adv Mater, 2021. 33(36): p. e2103672.
    4. Miron, I.M., et al., Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature, 2011. 476(7359): p. 189-93.
    5. Manchon, A., et al., Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Reviews of Modern Physics, 2019. 91(3): p. 035004.
    6. Emori, S., et al., Current-driven dynamics of chiral ferromagnetic domain walls. Nat Mater, 2013. 12(7): p. 611-6.
    7. Wan, C.H., et al., Gradual magnetization switching via domain nucleation driven by spin-orbit torque. Applied Physics Letters, 2021. 118(3): p. 032407.
    8. Kurenkov, A., et al., Artificial Neuron and Synapse Realized in an Antiferromagnet/Ferromagnet Heterostructure Using Dynamics of Spin-Orbit Torque Switching. Adv Mater, 2019. 31(23): p. e1900636.
    9. Grollier, J., D. Querlioz, and M.D. Stiles, Spintronic Nanodevices for Bioinspired Computing. Proc IEEE Inst Electr Electron Eng, 2016. 104(10): p. 2024-2039.
    10. Carcia, P.F., Perpendicular Magnetic-Anisotropy in Pd/Co and Pt/Co Thin-Film Layered Structures. Journal of Applied Physics, 1988. 63(10): p. 5066-5073.
    11. Chen, P.C., et al., Large enhancement of spin-orbit torques in Pd/CoFeB: The role of boron. Physical Review Materials, 2018. 2(6): p. 064408.
    12. Lee, H.R., et al., Spin-orbit torque in a bulk perpendicular magnetic anisotropy Pd/FePd/MgO system. Sci Rep, 2014. 4: p. 6548.
    13. Ikeda, S., et al., A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat Mater, 2010. 9(9): p. 721-4.
    14. Julliere, M., Tunneling between ferromagnetic films. Physics Letters A, 1975. 54(3): p. 225-226.
    15. Yuasa, S. and D.D. Djayaprawira, Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(0 0 1) barrier. Journal of Physics D: Applied Physics, 2007. 40(21): p. R337-R354.
    16. Sakuraba, Y., et al., Giant tunneling magnetoresistance in Co2MnSi∕Al–O∕Co2MnSi magnetic tunnel junctions. Applied Physics Letters, 2006. 88(19): p. 192508.
    17. Bowen, M., et al., Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments. Applied Physics Letters, 2003. 82(2): p. 233-235.
    18. Kuiper, A.E.T., et al., Plasma oxidation of thin aluminum layers for magnetic spin-tunnel junctions. Journal of Applied Physics, 2001. 89(3).
    19. Butler, W.H., et al., Spin-dependent tunneling conductance ofFe|MgO|Fesandwiches. Physical Review B, 2001. 63(5): p. 054416.
    20. Mathon, J. and A. Umerski, Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Physical Review B, 2001. 63(22): p. 220403.
    21. Ando, Y., et al., Spin-dependent tunneling spectroscopy in single-crystal Fe/MgO/Fe tunnel junctions. Applied Physics Letters, 2005. 87(14): p. 142502.
    22. Zhang, X.G. and W.H. Butler, Large magnetoresistance in bccCo∕MgO∕CoandFeCo∕MgO∕FeCotunnel junctions. Physical Review B, 2004. 70(17).
    23. Dieny, B. and M. Chshiev, Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Reviews of Modern Physics, 2017. 89(2): p. 025008.
    24. Sinova, J., et al., Universal intrinsic spin Hall effect. Phys Rev Lett, 2004. 92(12): p. 126603.
    25. Liu, L., et al., Spin-torque switching with the giant spin Hall effect of tantalum. Science, 2012. 336(6081): p. 555-8.
    26. Hao, Q. and G. Xiao, Giant Spin Hall Effect and Switching Induced by Spin-Transfer Torque in a W/Co40Fe40B20/MgO Structure with Perpendicular Magnetic Anisotropy. Physical Review Applied, 2015. 3(3): p. 034009.
    27. Oh, Y.W., et al., Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat Nanotechnol, 2016. 11(10): p. 878-884.
    28. Dieny, B., et al., Spin-transfer effect and its use in spintronic components. International Journal of Nanotechnology, 2010. 7(4-8): p. 591-614.
    29. Garello, K., et al., Ultrafast magnetization switching by spin-orbit torques. Applied Physics Letters, 2014. 105(21): p. 212402.
    30. Baumgartner, M., et al., Spatially and time-resolved magnetization dynamics driven by spin-orbit torques. Nat Nanotechnol, 2017. 12(10): p. 980-986.
    31. Thiaville, A., et al., Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Epl, 2012. 100(5).
    32. Kim, J., et al., Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nat Mater, 2013. 12(3): p. 240-5.
    33. Lee, K.-S., et al., Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect. Applied Physics Letters, 2013. 102(11).
    34. Manchon, A., et al., New perspectives for Rashba spin-orbit coupling. Nat Mater, 2015. 14(9): p. 871-82.
    35. Hoffmann, A., Spin Hall Effects in Metals. Ieee Transactions on Magnetics, 2013. 49(10): p. 5172-5193.
    36. Hasan, M.Z. and C.L. Kane, Colloquium: Topological insulators. Reviews of Modern Physics, 2010. 82(4): p. 3045-3067.
    37. Hall, E.H., On a new action of the magnet on electric currents. American Journal of Mathematics, 1879. 2(3).
    38. Hall, E.H., XVIII. On the “Rotational Coefficient” in nickel and cobalt. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2010. 12(74): p. 157-172.
    39. Karplus, R. and J.M. Luttinger, Hall Effect in Ferromagnetics. Physical Review, 1954. 95(5): p. 1154-1160.
    40. Niimi, Y. and Y. Otani, Reciprocal spin Hall effects in conductors with strong spin-orbit coupling: a review. Rep Prog Phys, 2015. 78(12): p. 124501.
    41. Dyakonov, M.I. and V.I. Perel, Possibility of Orienting Electron Spins with Current. Jetp Letters-Ussr, 1971. 13(11): p. 467-&.
    42. Hirsch, J.E., Spin Hall Effect. Physical Review Letters, 1999. 83(9): p. 1834-1837.
    43. Murakami, S., N. Nagaosa, and S.C. Zhang, Dissipationless quantum spin current at room temperature. Science, 2003. 301(5638): p. 1348-51.
    44. Morota, M., et al., Indication of intrinsic spin Hall effect in4dand5dtransition metals. Physical Review B, 2011. 83(17): p. 174405.
    45. Seki, T., et al., Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices. Nat Mater, 2008. 7(2): p. 125-9.
    46. Ando, K., et al., Electric manipulation of spin relaxation using the spin Hall effect. Phys Rev Lett, 2008. 101(3): p. 036601.
    47. Liu, L., et al., Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys Rev Lett, 2012. 109(9): p. 096602.
    48. Pai, C.-F., et al., Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Applied Physics Letters, 2012. 101(12).
    49. Wu, D., et al., Spin-orbit torques in perpendicularly magnetized Ir22Mn78/Co20Fe60B20/MgO multilayer. Applied Physics Letters, 2016. 109(22).
    50. Haazen, P.P., et al., Domain wall depinning governed by the spin Hall effect. Nat Mater, 2013. 12(4): p. 299-303.
    51. Bode, M., et al., Chiral magnetic order at surfaces driven by inversion asymmetry. Nature, 2007. 447(7141): p. 190-3.
    52. Li, M., J.B. Wang, and J. Lu, Understanding current-driven dynamics of magnetic Neel walls in heavy metal/ferromagnetic metal/oxide trilayers. New Journal of Physics, 2019. 21.
    53. Emori, S., et al., Spin Hall torque magnetometry of Dzyaloshinskii domain walls. Physical Review B, 2014. 90(18): p. 184427.
    54. Yu, J., et al., Spin orbit torques and Dzyaloshinskii-Moriya interaction in dual-interfaced Co-Ni multilayers. Sci Rep, 2016. 6: p. 32629.
    55. Garlow, J.A., et al., Quantification of Mixed Bloch-Neel Topological Spin Textures Stabilized by the Dzyaloshinskii-Moriya Interaction in Co/Pd Multilayers. Phys Rev Lett, 2019. 122(23): p. 237201.
    56. Chen, G., et al., Tailoring the chirality of magnetic domain walls by interface engineering. Nat Commun, 2013. 4: p. 2671.
    57. He, P.-B., M.-Q. Cai, and Z.-D. Li, Walker solution for a magnetic domain wall driven by spin-orbit torques. Physical Review B, 2020. 102(22): p. 224419.
    58. Garello, K., et al., Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat Nanotechnol, 2013. 8(8): p. 587-93.
    59. Taniguchi, T., S. Mitani, and M. Hayashi, Critical current destabilizing perpendicular magnetization by the spin Hall effect. Physical Review B, 2015. 92(2): p. 024428.
    60. Zhu, D.Q. and W.S. Zhao, Threshold Current Density for Perpendicular Magnetization Switching Through Spin-Orbit Torque. Physical Review Applied, 2020. 13(4): p. 044078.
    61. Fukami, S., et al., Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. Nat Mater, 2016. 15(5): p. 535-41.
    62. Zhang, S., et al., Spin-orbit-torque-driven multilevel switching in Ta/CoFeB/MgO structures without initialization. Applied Physics Letters, 2019. 114(4).
    63. Zhang, S., et al., A Spin-Orbit-Torque Memristive Device. Advanced Electronic Materials, 2019. 5(4): p. 1800782.
    64. Lemerle, S., et al., Domain Wall Creep in an Ising Ultrathin Magnetic Film. Physical Review Letters, 1998. 80(4): p. 849-852.
    65. Schryer, N.L. and L.R. Walker, The motion of 180° domain walls in uniform dc magnetic fields. Journal of Applied Physics, 1974. 45(12): p. 5406-5421.
    66. Risinggård, V. and J. Linder, Universal absence of Walker breakdown and linear current-velocity relation via spin-orbit torques in coupled and single domain wall motion. Physical Review B, 2017. 95(13): p. 134423.
    67. Lemesh, I. and G.S.D. Beach, Walker Breakdown with a Twist: Dynamics of Multilayer Domain Walls and Skyrmions Driven by Spin-Orbit Torque. Physical Review Applied, 2019. 12(4): p. 044031.
    68. Martinez, E., et al., Current-driven dynamics of Dzyaloshinskii domain walls in the presence of in-plane fields: Full micromagnetic and one-dimensional analysis. Journal of Applied Physics, 2014. 115(21): p. 213909.
    69. Bhowmik, D., et al., Deterministic Domain Wall Motion Orthogonal To Current Flow Due To Spin Orbit Torque. Sci Rep, 2015. 5: p. 11823.
    70. Garcia, J.P., et al., Magnetic domain wall dynamics in the precessional regime: Influence of the Dzyaloshinskii-Moriya interaction. Physical Review B, 2021. 104(1): p. 014405.
    71. Ha Pham, T., et al., Very large domain wall velocities in Pt/Co/GdOx and Pt/Co/Gd trilayers with Dzyaloshinskii-Moriya interaction. EPL (Europhysics Letters), 2016. 113(67001): p. 67001.
    72. Yoshimura, Y., et al., Soliton-like magnetic domain wall motion induced by the interfacial Dzyaloshinskii–Moriya interaction. Nature Physics, 2015. 12(2): p. 157-161.
    73. DuttaGupta, S., et al., Adiabatic spin-transfer-torque-induced domain wall creep in a magnetic metal. Nature Physics, 2015. 12(4): p. 333-336.
    74. Yamanouchi, M., et al., Universality classes for domain wall motion in the ferromagnetic semiconductor (Ga,Mn)As. Science, 2007. 317(5845): p. 1726-9.
    75. Mizukami, S., Y. Ando, and T. Miyazaki, The Study on Ferromagnetic Resonance Linewidth for NM/80NiFe/NM (NM=Cu, Ta, Pd and Pt) Films. Japanese Journal of Applied Physics, 2001. 40(Part 1, No. 2A): p. 580-585.
    76. Nakayama, H., et al., Geometry dependence on inverse spin Hall effect induced by spin pumping in Ni81Fe19/Pt films. Physical Review B, 2012. 85(14): p. 144408.
    77. Hayashi, M., et al., Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements. Physical Review B, 2014. 89(14): p. 144425.
    78. Pai, C.-F., et al., Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy. Physical Review B, 2016. 93(14): p. 144409.
    79. Dohi, T., S. Fukami, and H. Ohno, Influence of domain wall anisotropy on the current-induced hysteresis loop shift for quantification of the Dzyaloshinskii-Moriya interaction. Physical Review B, 2021. 103(21): p. 214450.
    80. Silver, D., et al., Mastering the game of Go with deep neural networks and tree search. Nature, 2016. 529(7587): p. 484-9.
    81. Lai, H.C. and L.Y. Jan, The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci, 2006. 7(7): p. 548-62.
    82. Jeyasothy, A., S. Ramasamy, and S. Sundaram, Meta-neuron learning based spiking neural classifier with time-varying weight model for credit scoring problem. Expert Systems with Applications, 2021. 178.
    83. Arandia-Romero, I., et al., What can neuronal populations tell us about cognition? Curr Opin Neurobiol, 2017. 46: p. 48-57.
    84. Bittner, S.R., et al., Population activity structure of excitatory and inhibitory neurons. PLoS One, 2017. 12(8): p. e0181773.
    85. Kepecs, A., et al., Neural correlates, computation and behavioural impact of decision confidence. Nature, 2008. 455(7210): p. 227-31.
    86. Starcke, K. and M. Brand, Decision making under stress: a selective review. Neurosci Biobehav Rev, 2012. 36(4): p. 1228-48.
    87. Ranck, J.B., Which elements are excited in electrical stimulation of mammalian central nervous system: A review. Brain Research, 1975. 98(3): p. 417-440.
    88. Lecun, Y., et al., Gradient-based learning applied to document recognition. Proceedings of the Ieee, 1998. 86(11): p. 2278-2324.
    89. Hochreiter, S. and J. Schmidhuber, Long short-term memory. Neural Comput, 1997. 9(8): p. 1735-80.
    90. Gokmen, T., M.J. Rasch, and W. Haensch, Training LSTM Networks With Resistive Cross-Point Devices. Front Neurosci, 2018. 12: p. 745.
    91. Li, C., et al., Long short-term memory networks in memristor crossbar arrays. Nature Machine Intelligence, 2019. 1(1): p. 49-57.
    92. Kastanenka, K.V., et al., A roadmap to integrate astrocytes into Systems Neuroscience. Glia, 2020. 68(1): p. 5-26.
    93. Collingridge, G.L., et al., Long-term depression in the CNS. Nat Rev Neurosci, 2010. 11(7): p. 459-73.
    94. Malenka, R.C. and M.F. Bear, LTP and LTD: an embarrassment of riches. Neuron, 2004. 44(1): p. 5-21.
    95. Wang, Z., et al., Fully memristive neural networks for pattern classification with unsupervised learning. Nature Electronics, 2018. 1(2): p. 137-145.
    96. Wang, W., et al., Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses. Sci Adv, 2018. 4(9): p. eaat4752.
    97. Ambrogio, S., et al., Neuromorphic Learning and Recognition With One-Transistor-One-Resistor Synapses and Bistable Metal Oxide RRAM. IEEE Transactions on Electron Devices, 2016. 63(4): p. 1508-1515.
    98. Serb, A., et al., Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat Commun, 2016. 7: p. 12611.
    99. Cao, Y., et al., Tuning a Binary Ferromagnet into a Multistate Synapse with Spin-Orbit-Torque-Induced Plasticity. Advanced Functional Materials, 2019. 29(25): p. 1808104.
    100. Liu, J., et al., Compensated Ferrimagnet Based Artificial Synapse and Neuron for Ultrafast Neuromorphic Computing. Advanced Functional Materials, 2021. 32(1).
    101. Kurenkov, A., et al., Device-size dependence of field-free spin-orbit torque induced magnetization switching in antiferromagnet/ferromagnet structures. Applied Physics Letters, 2017. 110(9).
    102. Ambrogio, S., et al., Equivalent-accuracy accelerated neural-network training using analogue memory. Nature, 2018. 558(7708): p. 60-67.
    103. Yang, J.Q., et al., Neuromorphic Engineering: From Biological to Spike-Based Hardware Nervous Systems. Adv Mater, 2020. 32(52): p. e2003610.
    104. Tao, X.D., et al., The spin Hall angle and spin diffusion length of Pd measured by spin pumping and microwave photoresistance. Journal of Applied Physics, 2014. 115(17).
    105. Ando, K. and E. Saitoh, Inverse spin-Hall effect in palladium at room temperature. Journal of Applied Physics, 2010. 108(11).
    106. Wang, Z., et al., Atomic-Scale Structure and Local Chemistry of CoFeB-MgO Magnetic Tunnel Junctions. Nano Lett, 2016. 16(3): p. 1530-6.
    107. Guo, G.Y., Q. Niu, and N. Nagaosa, Anomalous Nernst and Hall effects in magnetized platinum and palladium. Physical Review B, 2014. 89(21).
    108. Covi, E., et al., Adaptive Extreme Edge Computing for Wearable Devices. Front Neurosci, 2021. 15: p. 611300.
    109. Jung, S., et al., A crossbar array of magnetoresistive memory devices for in-memory computing. Nature, 2022. 601(7892): p. 211-216.
    110. Lim, G.J., et al., Spin-orbit torque induced multi-state magnetization switching in Co/Pt hall cross structures at elevated temperatures. Journal of Magnetism and Magnetic Materials, 2020. 514.
    111. Vansteenkiste, A., et al., The design and verification of MuMax3. Aip Advances, 2014. 4(10): p. 107133.
    112. Lapicque, L., Definition experimentale de l'excitabilite. Comptes rendus de l'Académie des Sciences, 1909. 67(2): p. 280-283.
    113. Weiss, G., Sur la possibilite de rendre comparables entre eux les appareils servant a l'excitation electrique. Archives Italiennes de Biologie, 1901. 35: p. 413-446.
    114. Geddes, L.A. and J.D. Bourland, The strength-duration curve. IEEE Trans Biomed Eng, 1985. 32(6): p. 458-9.
    115. Mogyoros, I., M.C. Kiernan, and D. Burke, Strength-duration properties of human peripheral nerve. Brain, 1996. 119: p. 439-447.
    116. Lin, P.H., et al., Manipulating exchange bias by spin-orbit torque. Nat Mater, 2019. 18(4): p. 335-341.

    QR CODE