簡易檢索 / 詳目顯示

研究生: 董柏青
Tung, Po-Ching
論文名稱: 安非他命類藥物的來源關係追蹤剖圖和同位素比應用
Deciphering the origin relationship of amphetamine-like drugs based on GC-MS impurity profiles and GC-IRMS isotopic ratio
指導教授: 凌永健
Ling, Yong-Chien
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 149
中文關鍵詞: 甲基安非他命同位素比質譜儀
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國內目前分析安非他命類藥物如甲基安非他命(MA)及亞甲雙氧基甲基安非他命(MDMA)方法,常以氣相層析質譜儀(GC-MS)分析合成過程中的特徵雜質,進一步區分其合成途徑。但此方法對純度高的毒品,難以成功偵測到特徵雜質;各實驗室前處理及儀器參數有所不同,難與國際接軌,共享調查成果。為一致化分析樣品之前處理方法及儀器參數,本研究利用歐盟安非他命類興奮劑的共同一致剖析測定雜質方法(CHAMP),並搭配氣相層析同位素比質譜儀(GC-IRMS)測定δ13C及δ15N,同步比對,針對不同來源包括合成方法及查扣MA及MDMA毒樣進行來源追蹤。
    測定熔點及旋光性可初步區分甲基安非他命之先驅原料為(偽)麻黃素或是苯丙酮,並發現15件查扣甲基安非他命毒樣中,12件屬於對人體有較高亢奮效果的右旋甲基安非他命。輔以雜質剖圖及δ13C及δ15N值分析結果,成功建立對甲基安非他命及MDMA來源追蹤之分析方法。以CHAMP GC-MS TIC圖之歐氏距離及δ13C與δ15N值分析結果,建立不同合成批次毒樣間之關聯性。證實當合成變數增加時,所造成的變異會隨之增加。不過受限於查扣樣品純度較高,無法單獨利用CHAMP GC-MS TIC圖之歐氏距離判斷其關聯性,必須依靠δ13C及δ15N值分析結果輔助判定。


    目錄 I 表目錄 V 圖目錄 VII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 氣相層析電子游離質譜儀 5 1-3 元素分析/氣相層析同位素比質譜儀 8 1-3-1 前言 8 1-3-2 穩定性同位素比值分析 9 1-3-3 穩定性同位素比分析之應用 16 1-4 統計分析 18 1-4-1 因素分析 18 1-4-2 歐氏距離 18 1-4-3 群集分析 19 第二章 甲基安非他命來源追蹤 20 2-1 前言 20 2-1-1 甲基安非他命歷史回顧 20 2-1-2 甲基安非他命簡介 20 2-1-3 文獻回顧 26 2-2 實驗方法 30 2-2-1 實驗流程 30 2-2-2 實驗藥品與設備 31 2-2-3 查扣樣品 35 2-2-4 合成樣品 36 2-2-5 前處理方法 38 2-2-6 CHAMP GC-MS分析 41 2-2-7 GC-IRMS分析 42 2-2-8 EA-IRMS分析 48 2-3 結果與討論 50 2-3-1 樣品成分確認 50 2-3-2 樣品熔點及旋光性確認 50 2-3-3 CHAMP GC-MS雜質成分分析 56 2-3-4 CHAMP GC-MS TIC圖歐氏距離估算 66 2-3-5 δ13C及δ15N分析結果 74 2-3-6 來源追蹤 85 第三章 MDMA來源追蹤 95 3-1 前言 95 3-1-1 MDMA歷史回顧 95 3-1-2 MDMA簡介 95 3-1-3 文獻回顧 100 3-2 實驗方法 103 3-2-1 實驗流程 103 3-2-2 實驗藥品與設備 105 3-2-3 查扣樣品 108 3-2-4 合成樣品 108 3-2-5 前處理方法 109 3-2-6 CHAMP GC-MS分析 111 3-2-7 GC-IRMS分析 112 3-3結果與討論 114 3-3-1 樣品成分確認 114 3-3-2 CHAMP GC-MS雜質成分分析 114 3-3-3 δ13C及δ15N分析結果 128 3-3-4 來源追蹤 130 第四章 結論與建議 133 4-1 結論 133 4-1-1 甲基安非他命來源追蹤 133 4-1-2 MDMA來源追蹤 138 4-2 建議 140 4-2-1 甲基安非他命來源追蹤 140 4-2-2 MDMA來源追蹤 141 第五章 參考文獻 142   表目錄 表1-1 輕穩定同位素相關資訊 10 表2-1 甲基安非他命特徵雜質資訊表 28 表2-2 查扣甲基安非他命樣品資訊表 36 表2-3 合成甲基安非他命樣品資訊表 38 表2-4 CHAMP GC-MS儀器參數 42 表2-5 碳同位素比分析品管檢品儀器參數 44 表2-6 氮同位素比分析品管檢品儀器參數 45 表2-7 甲基安非他命樣品及先驅原料之GC-IRMS儀器參數 47 表2-8 EA-IRMS儀器參數 49 表2-9 甲基安非他命合成及查扣樣品結晶之熔點測試結果 52 表2-10 甲基安非他命合成及查扣樣品結晶之旋光性測試結果 53 表2-11 甲基安非他命樣品之雜質鑑定結果(1/2) 60 表2-11 甲基安非他命樣品之雜質鑑定結果(2/2) 61 表2-12 同批次間歐氏距離 68 表2-13 同方法同先驅原料不同批次間歐氏距離 69 表2-14 同方法不同先驅原料間歐氏距離 70 表2-15 同先驅原料不同方法間歐氏距離(1/2) 71 表2-15 同先驅原料不同方法間歐氏距離(2/2) 72 表2-16 以(偽)麻黃素為先驅原料合成之δ13C及δ15N分析結果 76 表2-17 以苯丙酮為先驅原料合成之δ13C及δ15N分析結果 80 表2-18 合成苯丙酮之δ13C及δ15N分析結果 83 表2-19 查扣甲基安非他命樣品之δ13C及δ15N分析結果 84 表2-20 同批次之δ13C與δ15N及計算結果 88 表2-21 同方法同先驅原料不同批次之δ13C與δ15N及計算結果 89 表2-22 同先驅原料不同方法之δ13C與δ15N及計算結果 89 表2-23 同方法不同先驅原料之δ13C與δ15N及計算結果 89 表3-1 MDMA特徵雜質資訊表 101 表3-2 MDMA查扣樣品資訊表 108 表3-3 MDMA合成樣品資訊表 109 表3-4 MDMA樣品及先驅原料之GC-IRMS儀器參數 113 表3-5 MDMA樣品之雜質鑑定結果 119 表3-6 合成MDMA樣品之δ13C及δ15N分析結果 129 表3-7 查扣MDMA樣品之δ13C及δ15N分析結果 130   圖目錄 圖1-1 民國97及98年間違反毒害條例之少年科刑 3 圖1-2 民國91到97年間台灣地區查獲毒品統計圖 3 圖1-3 夜店臨檢採集檢體測試結果統計圖 4 圖1-4 氣相層析質譜儀儀器裝置圖 7 圖1-5 自然界物質之δ13C值 9 圖1-6 氣相層析同位素比質譜儀儀器裝置 13 圖1-7 元素分析同位素比質譜儀儀器裝置圖 15 圖2-1 甲基安非他命(Methamphetamine) 21 圖2-2 正腎上腺素(Norepinephine)及多巴胺(Dopamine) 22 圖2-3 非法實驗室生產甲基安非他命所可能使用的合成方法 25 圖2-4 實驗流程 31 圖2-5 甲基安非他命再結晶前處理方法 39 圖2-6 CHAMP GC-MS分析甲基安非他命之前處理方法 40 圖2-7 GC-IRMS分析甲基安非他命之前處理方法 41 圖2-8 合成甲基安非他命樣品熔點測試結果 54 圖2-9 查扣甲基安非他命樣品熔點測試結果 55 圖2-10 甲基安非他命雜質質譜圖整理(1/4) 62 圖2-10 甲基安非他命雜質質譜圖整理(2/4) 63 圖2-10 甲基安非他命雜質質譜圖整理(3/4) 64 圖2-10 甲基安非他命雜質質譜圖整理(4/4) 65 圖2-11 判定甲基安非他命關聯性之TIC圖歐氏距離標準 73 圖2-12 判定甲基安非他命關聯性之δ13C及δ15N標準 90 圖2-13 查扣甲基安非他命之δ13C與δ15N分佈 93 圖2-14 查扣甲基安非他命之群集分析結果 93 圖2-15 查扣甲基安非他命之群集分析修正結果 94 圖3-1 亞甲雙氧甲基安非他命(MDMA) 96 圖3-2 血清素(Serotonin) 97 圖3-3 常見MDMA合成途徑 99 圖3-4 實驗流程 104 圖3-5 CHAMP GC-MS分析MDMA之前處理方法 110 圖3-6 GC-IRMS分析MDMA之前處理方法 111 圖3-7 MDMA雜質質譜圖(1/8) 120 圖3-7 MDMA雜質質譜圖(2/8) 121 圖3-7 MDMA雜質質譜圖(3/8) 122 圖3-7 MDMA雜質質譜圖(6/8) 125 圖3-7 MDMA雜質質譜圖(7/8) 126 圖3-7 MDMA雜質質譜圖(8/8) 127 圖3-8 查扣MDMA之δ13C與δ15N分佈 132 圖3-9 查扣MDMA之群集分析結果 132 圖4-1 甲基安非他命來源追蹤判定流程圖 137 圖4-2 MDMA來源追蹤判定流程圖 139

    1. Sigmund Freud, From Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Sigmund_Freud.
    2. 國內毒品案件最新統計數據. 法務部調查局, Ed. 法務部調查局: 台北, 2009.
    3. 國內毒品案件最新統計報告摘要分析. 法務部調查局, Ed. 台北, 2009.
    4. 藥物濫用案件暨檢驗統計資料. 行政院衛生署: 2009.
    5. 楊士隆, 黃士龍, 江淑娟, 建立臺灣毒品問題整體圖像、趨勢變化指標體系與實際毒品濫用人數推估模式之研究. 國立中正大學犯罪研究中心, Ed. 2006.
    6. 賴滄海, 由尿液檢驗監測國內新興濫用藥物—大麻、MDMA、FM2等. 行政院衛生署管制藥品管理局九十年度科技研究發展計畫, Ed. 2002.
    7. Project SMT – CT98 – 2277, Development of a harmonised method for the profiling of amphetamines, Final Report. Finland, 2003.
    8. Kjell Andersson, K. J., Eric Lock, Yvonne Finnon, Henk Huizer, Elisabet Kaa, Alvaro Lopes, Anneke Poortman-van der Meer, Michael D. Cole, Johan Dahle´n, Erkki Sippola, Development of a harmonised method for the profiling of amphetamines III. Development of the gas chromatographic method. Forensic Science International 2007, 169, 50–63.
    9. L. Dujourdy, V. D., F. Besacier, N. Miano, R. Marquis, E. Lock, L. Aalberg, S. Dieckmann, F. Zrcek, J.S. Bozenko Jr., Drug intelligence based on organic impurities in illicit MA samples. Forensic Science International 2008, 177, 153–161.
    10. Padovan, G. J.; De Jong, D.; Rodrigues, L. P.; Marchini, J. S., Detection of adulteration of commercial honey samples by the 13C/12C isotopic ratio. Food Chemistry 2003, 82 (4), 633-636.
    11. Woodbury, S. E.; Evershed, R. P.; Rossell, J. B.; Griffith, R. E.; Farnell, P., Detection of Vegetable Oil Adulteration Using Gas Chromatography Combustion/Isotope Ratio Mass Spectrometry. Analytical Chemistry 1995, 67 (15), 2685-2690.
    12. Kelly, S.; Heaton, K.; Hoogewerff, J., Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends in Food Science & Technology 2005, 16 (12), 555-567.
    13. Palhol, F.; Lamoureux, C.; Chabrillat, M.; Naulet, N., 15N/14N isotopic ratio and statistical analysis: an efficient way of linking seized Ecstasy tablets. Analytica Chimica Acta 2004, 510 (1), 1-8.
    14. Palhol, F.; Lamoureux, C.; Naulet, N., 15N isotopic analyses: a powerful tool to establish links between seized 3,4-methylenedioxymethamphetamine (MDMA) tablets. Analytical and Bioanalytical Chemistry 2003, 376 (4), 486-490.
    15. Carter, J. F. T., E. L. ; Grant, H. ; Sleeman, R., Isotopic changes during the synthesis of amphetamines. Chem. Commun. 2002, 21, 2590-2591.
    16. Carter, J. F. T., E. L. ; Murray, M. ; Sleeman, R., Isotopic characterisation of 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethylamphetamine (ecstacy). Analyst 2002, 127, 830–833.
    17. Faulhaber, S.; Hener, U.; Mosandl, A., GC/IRMS Analysis of Mandarin Essential Oils. 1. δ13CPDB and δ15NAIR Values of Methyl N-Methylanthranilate. Journal of Agricultural and Food Chemistry 1997, 45 (7), 2579-2583.
    18. Schmidt, T.; Zwank, L.; Elsner, M.; Berg, M.; Meckenstock, R.; Haderlein, S., Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Analytical and Bioanalytical Chemistry 2004, 378 (2), 283-300.
    19. Sessions, A. L., Isotope-ratio detection for gas chromatography. Journal of Separation Science 2006, 29 (12), 1946-1961.
    20. Werner, R. A.; Brand, W. A., Referencing strategies and techniques in stable isotope ratio analysis. Rapid Communications in Mass Spectrometry 2001, 15 (7), 501-519.
    21. Benson, S.; Lennard, C.; Maynard, P.; Roux, C., Forensic applications of isotope ratio mass spectrometry--A review. Forensic Science International 2006, 157 (1), 1-22.
    22. Pupin, A. M.; Dennis, M. J.; Parker, I.; Kelly, S.; Bigwood, T.; Toledo, M. C. F., Use of Isotopic Analyses To Determine the Authenticity of Brazilian Orange Juice (Citrus sinensis). Journal of Agricultural and Food Chemistry 1998, 46 (4), 1369-1373.
    23. Phillips, S., Developing Forensic Applications of Stable Isotope Ratio Mass Spectrometry. In FIRMS Conference, 2002.
    24. Tremblay, P.; Paquin, R., Improved Detection of Sugar Addition to Maple Syrup Using Malic Acid as Internal Standard and in 13C Isotope Ratio Mass Spectrometry (IRMS). Journal of Agricultural and Food Chemistry 2006, 55 (2), 197-203.
    25. Binette, M.-J. e.; Lafontaine, P.; Vanier, M.; Ng, L.-K., Characterization of Canadian Cigarettes Using Multi-Stable Isotope Analysis by Gas Chromatography−Isotope Ratio Mass Spectrometry. Journal of Agricultural and Food Chemistry 2009, 57 (4), 1151-1155.
    26. Ehleringer, J. R.; Cooper, D. A.; Lott, M. J.; Cook, C. S., Geo-location of heroin and cocaine by stable isotope ratios. Forensic Science International 1999, 106 (1), 27-35.
    27. Liu JH, L. W., Fitzgerald MP, Saxena SC, Shieh YN, Possible characterization of samples of Cannabis sativa L. by their carbon isotopic distributions. Journal of Forensic Sciences 1979, 24, 814-816.
    28. Kurashima, N.; Makino, Y.; Sekita, S.; Urano, Y.; Nagano, T., Determination of Origin of Ephedrine Used as Precursor for Illicit Methamphetamine by Carbon and Nitrogen Stable Isotope Ratio Analysis. Analytical Chemistry 2004, 76 (14), 4233-4236.
    29. Makino, Y. U., Y. ; Nagano, T., Investigation of the origin of ephedrine and methamphetamine by stable isotope ratio mass spectrometry: a Japanese experience. Bulletin on Narcotics 2005, 47:1-2, 63-78.
    30. 陳順宇, 多變量分析. 華泰書局: 台北, 2005.
    31. Inoue, T. T., K. ; Ohmori, T. ; Seta, S., Impurity profiling analysis of methamphetamine seized in Japan. Forensic Science International 1994, 69, 97-102.
    32. Perkal, M. N., Y. L. ; Pearson, J. R., Impurity profiling of methylamphetamine in Australia and the development of national drugs database. Forensic Science International 1994, 69, 77–87.
    33. Nagai, N., "Kanyaku maou seibun kenkyuu seiseki (zoku)". . Yakugaku Zasshi 1983, 127, 832–860.
    34. 緒方章, 藥學雜誌 1919, 445, 193-216.
    35. 莊欽華, 覺醒劑(安非他命)在日本之禍害及有關問題. 刑事科學 1989, 48-60.
    36. 安非他命類藥物與精神疾病. 論壇健康促進與疾病預防委員會, Ed. 國家衛生研究院: 2005.
    37. 李志恆, 簡俊生, 游淑淳, 藥物濫用之防治˙危害˙戒治. 行政院生署管制藥品管理局: 台北, 2002.
    38. Southon, I. W. B., J., Dictionary of Alkaloids. Chapman and Hall: N.Y., 1989.
    39. Cho, K., Ice: a new dosage form of an old drug. Science 1990, 249, 631-634.
    40. Allen, A.; Cantrell, T. S., Synthetic reductions in clandestine amphetamine and methamphetamine laboratories: A review. Forensic Science International 1989, 42 (3), 183-199.
    41. Lee, J. S.; Han, E. Y.; Lee, S. Y.; Kim, E. M.; Park, Y. H.; Lim, M. A.; Chung, H. S.; Park, J. H., Analysis of the impurities in the methamphetamine synthesized by three different methods from ephedrine and pseudoephedrine. Forensic Science International 2006, 161 (2-3), 209-215.
    42. Synthesis of Ephedrine from Propionic Acid. http://www.erowid.org/archive/rhodium/chemistry/propionic2ephedrone2ephedrine.html.
    43. Synthesis of Phenyl-2-Propanone (P2P)-[www.rhodium.ws]. http://www,erowid.org/archive/rhodium/chemistry/phenylacetone.html.
    44. 陸慶松, 高純度苯基丙酮合成. 云南化工 2001, 28, 7-8.
    45. 陳中峻, 耿金龍, 王志林, 苯基丙酮合成方法的研究. 江蘇化工 1996, 24, 17-18.
    46. 張田林,唐瑋,傅運忠, 中間体苯基丙酮合成新工艺. 江蘇化工 2002, 30, 36-37.
    47. Puthaviriyakorn, V. S., N. ; Phorachata, J. ; Pan-ox, W. ; Sasaki, T. ; Tanaka, K., Identification of impurities and statistical classification of methamphetamine tablets (Ya-Ba) seized in Thailand. Forensic Science International 2002, 126, 105–113.
    48. Jae Sin Lee, E. Y. H., Soo Yeun Lee, Eun Mi Kim,Yong Hoon Park, Mi Ae Lim, Hee Sun Chung, Jeong Hill Park, Identification of impurities and the statistical classification of methamphetamine using headspace solid phase microextraction and gas chromatography–mass spectrometry. Forensic Science International 2006, 160, 44–52.
    49. Qi, Y. E., I. D. ; McCluskey, A., Australian Federal Police seizures of illicit crystalline methamphetamine ('ice') 1998-2002: Impurity analysis. Forensic Science International 2006, 164, 201-210.
    50. Barker, W. D.; Antia, U., A study of the use of Ephedra in the manufacture of methamphetamine. Forensic Science International 2007, 166 (2-3), 102-109.
    51. Ko, B. J. S., S. ; Suh, Y. J. ; In, M. K. ; Kim, S. H., The impurity characteristics of methamphetamine synthesized by Emde and Nagai method. Forensic Science International 2007, 170, 142-147.
    52. Qi, Y. E., I. ; McCluskey, A., New impurity profiles of recent Australian imported 'ice': Methamphetamine impurity profiling and the identification of (pseudo)ephedrine and Leuckart specific marker compounds. Forensic Science International 2007, 169, 173-180.
    53. Jae Sin Lee, H. S. C., Kenji Kuwayama, Hiroyuki Inoue, Mi Young Lee, Jeong Hill Park, Determination of impurities in illicit methamphetamine seized in Korea and Japan. Analytica Chimica Acta 2008, 619, 20-25.
    54. Windahl, K. L. M., M. J.; Pearson, J. R.; Pratt, S. J. ; Rowe, J. E. ; Sear, E. M., Investigation of the impurities found in methamphetamine synthesized from pseudoephedrine by reduction with hydriodic acid and red phosphorus. Forensic Science International 1995, 76, 97-114.
    55. Verweij, A. M. A., Impurities in Illicit Drug Preparations: Amphetamine and Methamphetamine. Forensic Science Review 1989, 1, 1-11.
    56. 蔡沛宜. 同位素比質譜儀於蜂蜜摻假之判定及甲基安非他命來源追蹤之研究. 國立清華大學, 2009.
    57. Welsh, L. H., The constitution of acetylephedrine and acetyl ephedrine. Journal of the American Chemical Society 1947, 69, 128-136.
    58. Theeuwen, A. B. E.; Verweij, A. M. A., Impurities in illicit amphetamine. 7. Identification of benzyl methyl ketone phenylisopropylimine and benzyl methyl ketone benzylimine in amphetamine. Forensic Science International 15 (3), 237-241.
    59. Aalberg, L.; Andersson, K.; Bertler, C.; Borén, H.; Cole, M. D.; Dahlén, J.; Finnon, Y.; Huizer, H.; Jalava, K.; Kaa, E.; Lock, E.; Lopes, A.; Poortman-van der Meer, A.; Sippola, E., Development of a harmonised method for the profiling of amphetamines: I. Synthesis of standards and compilation of analytical data. Forensic Science International 2005, 149 (2-3), 219-229.
    60. Billault, I.; Courant, F.; Pasquereau, L.; Derrien, S.; Robins, R. J.; Naulet, N., Correlation between the synthetic origin of methamphetamine samples and their 15N and 13C stable isotope ratios. Analytica Chimica Acta 2007, 593 (1), 20-29.
    61. Buchanan, H. A. S.; Daeid, N. N.; Meier-Augenstein, W.; Kemp, H. F.; Kerr, W. J.; Middleditch, M., Emerging Use of Isotope Ratio Mass Spectrometry as a Tool for Discrimination of 3,4-Methylenedioxymethamphetamine by Synthetic Route. Analytical Chemistry 2008, 80 (9), 3350-3356.
    62. Methylenedioxymethamphetamine-Wikipedia. http://en.wikipedia.org/wiki/MDMA.
    63. Gimeno, P.; Besacier, F.; Bottex, M.; Dujourdy, L.; Chaudron-Thozet, H., A study of impurities in intermediates and 3,4-methylenedioxymethamphetamine (MDMA) samples produced via reductive amination routes. Forensic Science International 2005, 155 (2-3), 141-157.
    64. Swist, M.; Wilamowski, J.; Parczewski, A., Determination of synthesis method of ecstasy based on the basic impurities. Forensic Science International 2005, 152 (2-3), 175-184.
    65. Swist, M.; Wilamowski, J.; Zuba, D.; Kochana, J.; Parczewski, A., Determination of synthesis route of 1-(3,4-methylenedioxyphenyl)-2-propanone (MDP-2-P) based on impurity profiles of MDMA. Forensic Science International 2005, 149 (2-3), 181-192.
    66. Ruth, J. H. S., W., A Review of Recent Advances in Impurity Profiling of Illicit MDMA Samples. Forensic Science International 2007, 52, 1297-1304.
    67. Palhol, F.; Boyer, S.; Naulet, N.; Chabrillat, M., Impurity profiling of seized MDMA tablets by capillary gas chromatography. Analytical and Bioanalytical Chemistry 2002, 374 (2), 274-281.
    68. Swist, M.; Wilamowski, J.; Parczewski, A., Basic and neutral route specific impurities in MDMA prepared by different synthesis methods - Comparison of impurity profiles. Forensic Science International 2005, 155 (2-3), 100-111.
    69. F. Mas , B. B., A. C. Veltkamp and A. M. A. Verweij Determination of ‘common-batch’ members in a set of confiscated 3,4-(methylendioxy)-methylamphetamine samples by measuring the natural isotope abundances: a preliminary study Forensic Science International 1995, 71, 225-231.
    70. 凃韋光. 己烷內分子碳穩定同位素比值分析之研究方法. 國立成功大學, 台南, 2004.
    71. 黃哥弋耀. 嗜甲烷菌微粒型甲烷單加氧酶基質反應機構的研究. 國立成功大學, 台南, 2005.
    72. Corso, T. N.; Brenna, J. T., High-precision position-specific isotope analysis. Proceedings of the National Academy of Sciences of the United States of America 1997, 94 (4), 1049-1053.
    73. Zhang, B.-L.; Buddrus, S.; Trierweiler, M.; Martin, G. J., Characterization of Glycerol from Different Origins by 2H- and 13C-NMR Studies of Site-Specific Natural Isotope Fractionation. Journal of Agricultural and Food Chemistry 1998, 46 (4), 1374-1380.
    74. Zhang, B.-L.; Trierweiler, M.; Jouitteau, C.; Martin, G. J., Consistency of NMR and Mass Spectrometry Determinations of Natural-Abundance Site-Specific Carbon Isotope Ratios. The Case of Glycerol. Analytical Chemistry 1999, 71 (13), 2301-2306.
    75. Tenailleau, E.; Lancelin, P.; Robins, R. J.; Akoka, S., NMR Approach to the Quantification of Nonstatistical 13C Distribution in Natural Products:  Vanillin. Analytical Chemistry 2004, 76 (13), 3818-3825.
    76. Tenailleau, E. J.; Lancelin, P.; Robins, R. J.; Akoka, S., Authentication of the Origin of Vanillin Using Quantitative Natural Abundance 13C NMR. Journal of Agricultural and Food Chemistry 2004, 52 (26), 7782-7787.
    77. Botosoa, E. P.; Caytan, E.; Silvestre, V.; Robins, R. J.; Akoka, S.; Remaud, G. S., Unexpected Fractionation in Site-Specific 13C Isotopic Distribution Detected by Quantitative 13C NMR at Natural Abundance. Journal of the American Chemical Society 2007, 130 (2), 414-415.
    78. Caytan, E.; Remaud, G. S.; Tenailleau, E.; Akoka, S., Precise and accurate quantitative 13C NMR with reduced experimental time. Talanta 2007, 71 (3), 1016-1021.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE