研究生: |
盧俊源 Chun-Yuan Lu |
---|---|
論文名稱: |
金氧半電晶體氧化層電荷與界面陷阱量測研究 Measurement of Oxide Charge and Interface Trap for MOSFET’s |
指導教授: |
張廖貴術 博士
Kuei-Shu Chang-Liao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 144 |
中文關鍵詞: | 電荷汲引電流 、界面陷阱 、氧化層電荷 、通道熱載子注入 、室溫回火效應 、中和步驟 、總劑量效應測試 |
外文關鍵詞: | Charge Pumping Current, Interface Trap, Oxide Charge, Channel Hot Carrier Injection, Room Temperature Annealing, Neutralization Step, Total Dose effect |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
由於快閃記憶體的讀寫均是藉由熱載子傳輸來達到電荷儲存和抹去的目的。因此在執行這些動作的同時,就非常有可能對於浮動閘極氧化層以及界面產生局部性的損害。而這些損害會使得記憶體元件電特性下降,並對於可靠度產生嚴重影響。因此為了能夠深入了解記憶體損害的程度以及局部熱載子對元件的影響。我們根據電荷汲引量測發展出一套直接萃取氧化層電荷和界面陷阱側向分佈的技術。由於此技術可直接從量測到的電荷汲引曲線獲得所要結果,並不需要繁雜的數值模擬。已然成為研究熱載子損傷最好的量測工具之一。 雖然
此方法在理論上好像相當容易,但是在實際上卻有一個相當難克服且不容易執行的步驟(氧化層電荷中和的步驟)。也由於此步驟並不容易執行且確定,常常使得所求得的Not和Nit分佈帶著相當程度的誤差,使之實驗失去了應有的準確性。為了要去改善此方法所造成的缺失,在本論文中我們提供了二種針對中和步驟改善的方法,其一為二階段中和步驟,其二為電荷汲引曲線數值修正。而這些改善的方法對於提升電荷汲引量測技術的準確性有著相當程度的助益。在本研究的最後,我們選取了8051微控制器(Micro-controller)和SRAM 靜態隨機存取記憶體來進行輻射總劑量測試以及低劑量效應測試,用以作為太空元件抗輻射影響評估可靠性的指標。
參考文獻
[1] J. J. O’Dwyer, ”The Theory of Electrical Conduction and Breakdown in Solid Dielectrics”, Clarendon Press, 1973.
[2] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim Tunneling into Thermally Grown SiO2,” Journal of Applied Physics, January 1969, p.278.
[3] S. Tam, P. K. Ko, and C. Hu, “Lucky-Electron Model of Channel Hot-Electron Injection in MOSFET’s,” IEEE Transaction on Electron Devices, Vol.31, September 1984, p.1116.
[4] N. Tsuji, N. Ajika, K. Yuzuriha, Y. Kunori, M. Hatanaka, and H. Miyoshi, ”New erase scheme for DINOR Flash Memory Enhancing Erase/Write Cycling Endurance Characetristics,” Technical Digest of IEDM, 1994, p.53.
[5] T. P. Ma and P. V. Dressendorfer, “Ionizing Radiation Effects in MOS Devices and Circuits,” John Wiley & Sons,1989.
[6] E. H. Nicollian and J. R. Brews, “MOS Physics and Technology,” John Wiley & Sons, 1982.
[7] K. F. Schuegraf and C. Hu, “Hole Injection SiO2 Breakdown Model for Very Low Voltage Lifetime Extrapolation,” IEEE Transactions on Electron Devices, Vol.41, May 1994, p.761.
[8] K. R. Hoffman, C. Werner, and G. Dorda, “Hot- Electron and Hole-Emission Effects in Short N-Channel MOSFET’s,” IEEE Transactions on Electron Devices, Vol.32, 1985, p.691.
[9] P. Heremans, R. Bellens, G. Groeseneken, and H. E. Maes, “Consistent Model for the Hot-Carrier Degradation in N-Channel and P-Channel MOSFET’s,” IEEE Transactions on Electron Devices, Vol.35, 1998, p.2194.
[10] R. E. Shimer, J. M. Caywood, and B. L. Euzent, ”Data retention in EPROMs,” IEEE-IRPS, April 1980, pages 238-243.
[11] Neal R. Mielke, “New EPROM data-loss mechanisms,” IEEE-IRPS, April 1983, pages 106-113.
[12] G. Verma, N. Mielke, “Reliability performance of ETOX based flash memories,” IEEE-IRPS, April 1988, page 158.
[13] T. C. Ong, A. Fazio, N. Mielke, S. Pan, N. Righos, G. Atwood, and S. Lai, ”Erratic erase in ETOXTM flash memory array,” IEEE – VLSI Symposium, 1993, pages 83-84.
[14] T. C. Ong, A. Fazio, N. Mielke, S. Pan, G. Atwood, S. Lai, “Instability of erase threshold voltage in ETOXTM flash memory array,” SRC Topical Research Conference on Floating Gate Non-Volatile Memory Research , Berkeley, October 1-2 1992.
[15] S. Lai, “Oxide/Silicon interface effects in EEPROMs and ETOXTM flash,” SRC Topical Research Conference on Floating Gate Non-Volatile Memory Research , Berkeley , October 1-2 1992.
[16] P. J. McWhorter, P. S. Winokur, “Simple Technique for Separating the Effects of Interface Traps and Trapped Oxide Charge in Metal-Oxide-Semiconductor Transistor,” Applied Physics Letters, January 1986, p.133.
[17] Dieter K. Schroder, “Semiconductor Material and Devices Characterization,” John Wiley & Sons,1998.
[18] K. T. San, and T. P. Ma, ”Determination of Trapped Oxide Charge in Flash EPROM’s and MOSFET’s with Thin Oxides,” IEEE Electron Device Letters, Vol.13, August 1992, p.439.
[19] W. Weber, M. Brox, R. Thewes, and N.S. Saks, “Hot-hole-induced negative oxide charges in n-MOSFET’s,” IEEE Transactions on Electron Devices, Vol.42, August 1995, p.1473.
[20] J. S. Bruglar and P. G. A. Jaspers, “Charge Pumping in MOS Devices,” IEEE Transactions on Electron Devices, Vol.16, 1969, p.297.
[21] G. Groeseneken, H. E. Maes, N. Bertran, and R. F. De Keersmaecker, ”A Reliable Approach to Charge-Pumping Measurements in MOS Transistors,” IEEE Transactions on Electron Devices, Vol.31, 1984, p.42.
[22] W. Chen, A. Balasinski, and T. P. Ma ,”Lateral profiling of oxide charge and interface traps near MOSFET junction,” IEEE Transactions on Electron Devices, Vol.40, January 1993, p.187.
[23] M. G. Ancona, N.S. Saks, and D. McCarthy, “Lateral distribution of hot-carrier-induced interface traps in MOSFET’s,”IEEE Transactions on Electron Devices, Vol.35, December 1988, p.2221.
[24] R. G. H. Lee et al, “New method for characterizing the spatial distributions of interface states and oxide-trapped charges in LDD n-MOSFET’s,” IEEE Transactions on Electron Devices, Vol.43, January 1996, p.81
[25] M. Tsuchiaki, H. Hara, T. Morimoto, and H. Iwai, “A new charge pumping method for determining the spatial distribution of hot-carrier-induced fixed charge in p-MOSFET’s,” in IEEE Transactions on Electron Devices, Vol.40, October 1993, p.1768.
[26] K. T. San, C. Kaya, and T. P. Ma, “Effects of Erase Source Bias on Flash EPROM Device Reliability,” IEEE Transactions on Electron Devices, Vol.42, January 1995, p150.
[27] C. Chen, T. P. Ma, “Direct Lateral Profiling of Hot-Carrier-Induced Oxide Charge and Interface Traps in Thin Gate MOSFET’s,” IEEE Transactions Electron Devices, Vol.45, February 1998, p.512.
[28] Ashot Melik-Martirosian and T. P. Ma, “Improved Charge-Pumping
Method for Lateral Profiling of Interface Traps and Oxide Charge in MOSFET Devices,” IEDM 99, page : 93-96
[29] W. L. Bendel and E. L. Peterson, “Predicting Single Event Upsets in The Earth’s Proton Belts,” IEEE Transactions on Nuclear Science, Vol. NS-31, No.6, December 1984, p.1201.
[30] John W. Adolphsen, John J. Yagelowich, Kusum Sahu, W. A. Kolasinsky, R. Koga, E.G. Stassinopoulos and Eugene V. Benton, “Space Shuttle Flight Test Results of The Cosmic Ray Upset Experiment,” IEEE Transactions on Nuclear Science, Vol. NS-31, No.6, 1984, p.1178.
[31] MIL-STD-883E Method 1019.4
[32] W. C. Jenkins and R. L. Martin, “A comparison of methods for simulating low dose-rate gamma ray testing of MOS devices,” IEEE Transactions on Nuclear Science, Vol. Ns-38, 1991, p.1560.
[33] P. S. Winokur, F. W. Sexton, J. R. Schwank, D. M. Fleetwood, P. V. Dressendorfer, T. F. Wrobel, and D. C. Turpin, “Total-Dose Radiation and Annealing Studies : Implications for Hardness Assurance Testing,” IEEE Transactions on Nuclear Science, Ns-33, December 1986, p.1343.
[34] Yuan Taur, Tak H. Ning ,”Fundamentals of modern VLSI devices,” Cambridge , 1998.
[35] S. M. Sze, ”Physics of Semiconductor Devices 2nd Edition,” John Wiley & Sons, 1983.
[36] Donald A. Neamen, ”Semiconductor Physics & Devices,” McGraw-Hill, 1997.
[37] A. S. Grove, “Physics and Technology of Semiconductor Devices,” John Wiley & Sons, 1979.