簡易檢索 / 詳目顯示

研究生: 蔡政宏
Tsai, Cheng-Hung
論文名稱: 藉由雙腔體系統決定物質的複數介電係數及導磁率
Characterizing the Complex Permittivity and Permeability with a Dual Cavity System
指導教授: 張存續
Chang, Tsun-Hsu
口試委員: 潘犀靈
Pan, Ci-Ling
張宏宜
Chang, Horng-Yi
黃菁儀
Huang, Jing-Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 52
中文關鍵詞: 雙腔體系統複合材料介電係數磁導率
外文關鍵詞: Dual cavity system, Composite material, Complex permittivity, Complex permeability
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 了解材料的特性有助於了解微波與材料的交互作用並提供工業研發的基礎,為了精確地量測材料特性,我們提出了新的量測方式-雙腔體系統-來改良目前常用的腔體微擾法,我們的系統能夠藉由疊代法減少材料引發的電磁場與腔體內部的電磁場之間的影響.我們準備了三種不同的複合材料,包含四氧化三鐵,銀,羰基鐵,分別與樹酯作混合,另外還準備了一種商用的鐵氧體.我們的系統能夠準確地量測這些複合材料的介電係數與磁導率並由這些複合材料回推材料本身在微波頻段的特性,在有外加磁場的條件下,我們也能清楚地測量到複合材料的磁化特性,對於商用鐵氧體,我們的量測也發現到不同的外加磁場會加強不同的共振模式.


    Characterizing the electromagnetic properties helps us to understand the microwave-material interaction and to provide the foundation in engineering studies. For the precise measurement, the commonly used technique, cavity perturbation, suffers from the interplay between electric and magnetic fields. However, our proposed method, the dual-cavity system, can almost separate the influence of each field on the sample to characterize the relative complex permittivity and permeability, respectively. We prepared samples including three homemade epoxy-based composites (Fe3O4, silver, and carbonyl iron) and a commercial ferrite garnet. The complex permittivity and permeability of each composite can be determined and be well analyzed with the effective medium theories. With external magnetic fields, the electromagnetic properties of each composite change differently due to their own magnetism. For the ferrite garnet, distinct transverse electromagnetic (TEM) modes are enhanced with different magnetic bias fields.

    Acknowledgements------------------------------------------------i Abstract-------------------------------------------------------ii Content-------------------------------------------------------iii List of Figures-------------------------------------------------v List of Tables------------------------------------------------vii Chapter1 Introduction-------------------------------------------1 1.1 Motivation--------------------------------------------------1 1.2 Basic Parameters--------------------------------------------2 1.3 Ferrite Materials-------------------------------------------6 1.4 Measurement Techniques--------------------------------------9 1.5 Effective Medium Theories----------------------------------11 Chapter2 Experimental Method-----------------------------------16 2.1 Cavity for Determining the Complex Permittivity (Cavity1)--16 2.2 Cavity for Determining the Complex Permeability (Cavity2)--16 2.3 Measurements with the PNA Network Analyzer-----------------17 2.4 Iteration Method for the Dual-Cavity System----------------18 Chapter3 Sample Preparation------------------------------------22 3.1 Production Process-----------------------------------------22 3.2 Ferrite Garnet---------------------------------------------23 Chapter4 Results of Composite Materials------------------------25 4.1 Calibration for the New Cavity (Cavity2)-------------------25 4.2 Measured results of Composite Materials--------------------25 4.3 Comparison between Measurements and Simulations------------26 4.4 Derived Complex Permeability and Permeability--------------27 4.5 Analyzing with Effective Medium Theories-------------------28 Chapter5 Measurements with Bias Fields-------------------------38 5.1 Composite Materials with Bias Fields-----------------------38 5.2 Ferrites with Bias Fields----------------------------------40 Chapter6 Conclusions-------------------------------------------48 References-----------------------------------------------------49

    [1] D. E. Clark and W. H. Sutton, Annu. Rev. Mater. Sci. 26, 299 (1996).
    [2] E. T. Thostenson and T. W. Chou, Compos. Part A 30, 1055 (1999).
    [3] J. B. Jarvis, NIST Tech. Note 1536 (2005).
    [4] M. S. Venkatesh, G. S. V. Raghavan, Canadian Biosystems Engineering 47, 7.15 (2005).
    [5] H. W. Chao, W. S. Wong, and T. H. Chang, Rev. Sci. Instrum. 86, 114701 (2015).
    [6] W. S. Wong, M.S. thesis, National Tsing Hua University, 2006.
    [7] J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), 2nd ed.
    [8] T. C. Choy, Effective Medium Theory (Clarendon, Oxford, 1999).
    [9] R. G. Geyer, J. B. Jarvis, and J. V. Mantese, NIST Tech. Note 1371, (1994).
    [10] J. C. M. Garnett, Philos Trans. R. Soc. London, Ser. A 203, 385 (1904).
    [11] D. A. G. Bruggeman, Ann. Phys. (Paris) 24, 636 (1935).
    [12] H. Looyenga, Physica (Amsterdam) 31, 401 (1965).
    [13] E. P. Wohlfarth, Ferromagnetic materials: a handbook on the properties of magnetically ordered substances. (Elsevier, North-Holland, 1980) vol. 2.
    [14] M. I. Bichurin, V. M. Petrov, Yu. V. Kiliba, and G. Srinivasan, Phys. Rev. B 66, 134404 (2002).
    [15] X. Huang, Y. Chen, J. Yu, J. Zhang, T. Sang, G. Tao, and H. Zhu, J. Mater. Sci. 26, 3474 (2015).
    [16] X. G. Liu, S. W. Or, C. M. Leung, and S. L. Ho, J. Appl. Phys. 113, 17B307 (2013).
    [17] S. Ni, S. Lin, Q. Pan, F. Yang, K. Huang, and D. He, J. Phys. D 42, 055004 (2009).
    [18] R. B. Yang, W. F. Liang, and C. K. Lin, J. Appl. Phys. 109, 1 (2011).
    [19] R. Han, W. Li, W. W. Pan, M. G. Zhu, D. Zhou, and F. S. Li, Sci. Rep. 4, 7493 (2014).
    [20] R. Groenen, Ph.D. thesis, University of Twente Enschede, 2010.
    [21] R. B. Yang, S. D. Hsu, and C. K. Lin, J. Appl. Phys. 105, 07A527 (2009).
    [22] R. B. Yang and W. F. Liang, J. Appl. Phys. 109, 07A311 (2011).
    [23] A. M. Gama and M. C. Rezende, J. Aerosp. Technol. Manage. 2, 59 (2011).

    QR CODE