簡易檢索 / 詳目顯示

研究生: 蘇子皓
論文名稱: 以RDF規範為基礎之專利授權知識結構解析與表達技術
An RDF-based Knowledge Extraction and Representation Technique for Patent Licensing Knowledge
指導教授: 侯建良
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 174
中文關鍵詞: 專利授權斷詞結構解析知識表達
外文關鍵詞: RDF, Patent Licensing, Fragmentation, Document Structure Extraction, Knowledge Representation, Resource Description Framework
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,專利/技術之重要性乃逐漸提升,專利授權知識之相關應用乃漸為廣泛,如專利/技術授權之價格鑑定機制乃需仰賴專利授權資訊,以作為價格鑑定機制判斷之指標;是故,專利授權知識對於專利需求者(如專利鑑價者、專利發明者等)之重要性乃逐漸增加。隨著專利授權知識之應用日趨重要,專利授權知識之擷取、儲存、管理與再利用乃為業界所關注之重要課題。然而,就專利授權領域所存在之知識管理相關議題而言,過去研究甚少融入自然語言處理與知識表達等技術進行專利授權文件之剖析,而主要係以人工方式透過各搜尋網站蒐集專利授權相關資料,再以人工閱讀方式擷取所需之專利授權知識,進而歸納、彙整以形成結構化文件,以便進行後續之專利授權資料分享與交換。此外,隨著時間之累積,專利授權領域之網路資源已逐漸增加,並超過人類所能整理與解讀之負荷。有鑑於此,本研究乃針對專利授權領域提出專利授權文件之知識結構解析與表達模式,自該領域文件中自動擷取具有價值且有意義之專利授權知識並予以結構化表達。其中,「專利授權知識結構解析模組」乃以詞彙發生頻率及個別詞彙/詞句資訊(如詞彙/詞句長度、詞彙權重值等)為依歸而發展,並考量各專利授權知識屬性之特性,建構適用之法則,以使解析結果更具正確性。而「專利授權知識表達模組」則以語意網之知識表達概念為基礎,配合RDF語法及知識本體結構技術,使專利授權知識文件之表達具有語意層次之結構,以有效達到專利授權知識之自動化表達、分享與交換之目標。
    此外,為便於專利需求者(如專利鑑價者、專利發明者)使用專利授權資訊,並將專利授權資訊應用於專利價格鑑定之指標等用途,本研究乃於網際網路環境下建構一套專利授權知識結構解析與表達系統,提供專利需求者一個自動化處理專利授權文件之環境,進而提升專利授權知識之管理效能與再利用率。


    In recent years, importance of patents/advanced technologies has been realized and thus applications of patent licensing knowledge have been stressed. As a result, all typical knowledge management activities (e.g., knowledge extraction, storage, and reuse) for have become the key issues for management of patent licensing knowledge. Traditionally, the contents of patent licensing documents have to be recognized by domain experts. Concerning complexity of different types of patent licensing documents, this paper develops an approach for structure extraction and knowledge representation of the patent licensing documents. The algorithms for knowledge extraction, fragmentation, natural language processing (NLP), knowledge representation and resource description framework (RDF) are applied for automatic and structured representation of patent licensing documents. In addition, a Web-based knowledge management system for patent licensing documents is also developed in order to facilitate exchange of patent licensing knowledge. The aim of this research is to establish an applicable environment for sharing of patent licensing knowledge and enhance the efficiency for patent licensing knowledge management.

    第一章、研究背景 1 1.1研究動機與目的 1 1.2研究步驟 4 1.3研究定位 6 第二章、文獻回顧 8 2.1自然語言處理(Nature Language Processing) 8 2.1.1詞彙分析模組(Word Segmentation Module) 8 2.1.2語法剖析模組(Syntactic Analysis Module) 12 2.1.3語義分析模組(Semantic Analysis Module) 15 2.2知識表達(Knowledge Representation) 17 2.2.1知識表達法則 17 2.2.2知識或人工智慧表達語言 22 2.2.3知識表達應用 25 第三章、專利授權知識結構解析與表達模式 28 3.1定義專利授權知識架構及關鍵字詞庫 29 3.1.1定義專利授權知識架構 29 3.1.2定義專利授權知識領域之關鍵字詞庫 33 3.2專利授權知識結構解析模組 34 3.2.1專利授權知識要件詞句群之擷取 35 3.2.2專利授權知識屬性詞句群之擷取 48 3.2.3專利授權知識屬性之唯一屬性值之擷取 65 3.3專利授權知識表達模組 72 3.3.1 RDF規範-資料單元、資料單元結構與語法介紹 73 3.3.1.1 RDF資料單元 73 3.3.1.2 RDF資料單元結構 74 3.3.1.3 RDF資料語法 76 3.3.2專利授權知識表達機制 79 第四章、系統架構與規劃 83 4.1專利授權知識結構解析與表達系統核心架構 83 4.2系統功能架構 84 4.3資料模式定義 88 4.4系統流程 90 4.4.1系統功能流程 90 4.4.2系統資料流程 97 4.5系統開發工具 98 第五章、系統實作與案例分析 101 5.1專利授權知識結構解析過程驗證與評估 101 5.1.1系統驗證進行方式說明 101 5.1.2第一階段系統驗證結果分析 107 5.1.3第二階段系統驗證結果分析 114 5.2專利授權知識解析之績效 119 第六章、結論與未來展望 125 參考文獻 129 附錄一、系統功能操作說明 137 附錄二、專利授權文件內容 173

    1.白珊慈,2005,「提升知識再利用效能之知識視覺化技術:以空間知識表達為例」,碩士論文(指導教授:侯建良),國立清華大學工業工程與工程管理研究所。
    2.林仁貴,2004,「以RDF規範為基礎之知識文件內容與結構解析技術」,碩士論文(指導教授:侯建良),國立清華大學工業工程與工程管理研究所。
    3.林介山,1986,「以PROLOG為基礎的知識獲取工具及其應用」,碩士論文(指導教授:許清琦),國立台灣大學資訊科學研究所。
    4.洪森杰,1998,「類神經網路於文件結構分析之探討-以XML為例」,碩士論文(指導教授:王元凱、張克章),國防管理學院國防資訊研究所。
    5.胡勝傑,1999,「中文新聞文件分析與探勘」,碩士論文(指導教授:許中川),雲林科技大學資訊管理研究所。
    6.范長康、蔡文祥,1987,「以鬆弛法作中文斷詞」,全國計算機會議論文集,第423-431頁。
    7.唐大任,2002,「中文斷詞器之研究」,碩士論文(指導教授:王逸如),國立交通大學電信工程系。
    8.張俊盛、陳志達與陳舜德,1991,「限制式滿足及機率最佳化的中文斷詞方法」,第四屆計算語言學研討會論文集,第147-165頁。
    9.張□修,2000,「基於事件偵測技術之智慧型網際網路文件資訊萃取」,碩士論文(指導教授:郭耀煌、蔣榮先),國立成功大學資訊工程研究所。
    10.張紹勳,1993,人工智慧與專家系統,台北,松岡。
    11.陳何仁淵,1988,「規則型專家系統的設計與製作」,碩士論文(指導教授:吳憲明),淡江大學資訊科學研究所。
    12.陳克健、陳正佳、林隆基,1986,「中文語句分析的研究—斷詞與構詞」,TR86-004,中央研究院資訊所。
    13.陳孟華,2002,「以模糊理論與關聯法則為基礎之二階中文辭彙分割法」,碩士論文(指導教授:林丕靜),淡江大學資訊工程學系。
    14.陳稼興、謝佳倫、許芳誠,2000,「以遺傳演算法為基礎的中文斷詞研究」,電子商務學報,第二卷,第二期,第27-44頁。
    15.曾志軒,2001,「中文結構化文件之語意索引」,碩士論文(指導教授:柯皓仁、楊維邦),國立交通大學資訊科學研究所。
    16.黃如玉,2002,「應用文件探勘技術於中文產業新聞之知識發掘」,碩士論文(指導教授:李惠明),中國文化大學資訊管理研究所。
    17.黃宇斌,2000,「警察勤務執行機構設置調整分析專家系統雛型之研究」,碩士論文(指導教授:王本正),東海大學管理研究所。
    18.楊玲,1985,「應用PROLOG於訂貨型生產排程模式之建立」,碩士論文(指導教授:林麗瑛、張保隆),國立交通大學管理科學研究所。
    19.楊紹明,2004,「建構語意網規則導向之電子契約自動化協商機制之研究」,碩士論文(指導教授:戚玉樑),中原大學資訊管理研究所。
    20.楊豐兆,1990,「在事物導向與法則基底混合式知識表示法環境下推論機之設計」,碩士論文(指導教授:何裕琨),成功大學電機工程研究所。
    21.劉翔銘,2004,「模糊知識驗證演算法之研究與實證」,碩士論文(指導教授:黃國禎),國立暨南大學資訊管理研究所。
    22.蔡純純,2003,「中文新聞文件空間資訊擷取之研究-以火災、搶劫、車禍事件為例」,碩士論文(指導教授:朱子豪),國立臺灣大學地理環境資源學研究所。
    23.賴芳敏,1993,「一個2-3階馬可夫語言模式於中文斷詞及詞性標示之應用」,碩士論文(指導教授:李錫堅),國立交通大學資訊工程研究所。
    24.謝佳倫,1999,「遺傳演算法應用於中文斷詞之研究」,碩士論文(指導教授:陳稼興),國立中央大學資訊管理研究所。
    25.簡名辰,2002,「工程設計知識架構之研析」,碩士論文(指導教授:李振榮),國立高雄第一科技大學營建工程研究所。
    26.簡嘉建,2003,「建構在語意網上之分散式電子化學習物件分享機制:以物料需求規劃之學習為例」,碩士論文(指導教授:朱詣尹),國立清華大學工業工程與工程管理研究所。
    27.羅雲忠,1996,「透過ODBC實現邏輯程式存取RDB之介紹」,碩士論文(指導教授:黃悅民),國立成功大學工程科學研究所。
    28.Bayer, T. A., 1993, “Understanding structured text documents by a model based document analysis system,” Proceedings of the Second International Conference on Document Analysis and Recognition, pp. 448-453.
    29.Bobrow, D. G. and Winograd, T., 1977, “An overview of KRL, a knowledge representation language,” Cognitive Science, Vol. 1, No. 1, pp. 3-46.
    30.Brill, E., 1992 , “A simple rule-based part of speech tagger,” Department of Computer Science University of Pennsylvania Philadelphia, Pennsylvania.
    31.Broekstra, J., Klein, M., Decker, S., Fensel, D., Harmelen, F. V. and Horrocks, I., 2002, “Enabling knowledge representation on the web by extending RDF Schema,” Computer Networks, Vol. 39, No. 5, pp. 609-634.
    32.Chan, S. W. K., 2004, “Extraction of salient textual patterns: Synergy between lexical cohesion and contextual coherence,” IEEE Transactions on Systems, Man and Cybernetics, Part A, Vol. 34, No. 2, pp. 205-218.
    33.Chen, H. H., Ding, Y. W., Tsai, S. C. and Bian, G. W., 1998, “Description of the NTU system used for MET2,” Proceedings of Message Understanding Conference on Natural Language Processing Laboratory, pp. 1-9.
    34.Chen, K. H. and Chen, H. H., 1993, “A probabilistic chunker,” Proceedings of the 6th R.O.C. Computational Linguistics Conference, pp. 99-117.
    35.Chen, K. J. and Liu, S. H., 1992, “Word identification for Mandarin Chinese sentences,” Proceedings of International Conference on Computational Linguistics, pp. 101-107.
    36.Chiang, T. H., Chang, J. S., Lin, M. Y. and Su, K. Y., 1992, “Statistical models for word segmentation and unknown word resolution,” Proceedings of the 5th R.O.C. Computational Linguistics Conference, pp. 121-146.
    37.Chung, Y. M., He, Q., Powell, K. and Schatz, B., 1999, “Semantic indexing for a complete subject discipline,” Proceedings of the ACM Conference on Digital Libraries, pp. 39-48.
    38.Church, K.W., 1988, “A stochastic parts program and noun phrase parser for unrestricted text,” Proceedings of the Second Conference on Applied Natural Language Processing, pp. 136-143.
    39.Colmerauer, A. and Roussel, P., 1992, “The birth of PROLOG,” ACM SIGPLAN Notices, Vol. 28, No. 3, pp. 37-52.
    40.deOliverira, I. L. and Wazlawick, R. S., 1998, “A modular connectionist parser for resolution of pronominal anaphoric references in multiple sentences,” Proceedings, The 1998 IEEE International Joint Conference on Neural Networks, Vol. 2, pp. 1194-1199.
    41.Ebenhoch, M. P., 2001, “Legal knowledge representation using the resource description framework (RDF),” Proceedings of the 12th International Workshop on Database and Expert Systems Applications, pp. 369-373.
    42.Fan, C. K. and Tsai, W. H., 1988, “Automatic word identification in Chinese sentences by the relaxation technique,” Computer Processing of Chinese and Oriental Languages, Vol. 4, No. 1, pp. 33-56.
    43.Fan, T. F., Hu, W. C. and Liau, C. J., 2001, “Decision logics for knowledge representation in data mining,” The 25th Annual International Conference on Computer Software and Applications, pp. 626-631.
    44.Goldstein, I. P. and Roberts, R. B., 1977, “Nudge, a knowledge-based scheduling program,” The 5th International Joint Conference on Artificial Intelligence, pp. 257-263.
    45.He, Y. and Young, S., 2005, “Semantic processing using the Hidden Vector State model,” Computer Speech & Language, Vol. 19, No. 1, pp. 85-106.
    46.Heiko, G., 2001, “On parsing and condensing substrings of LR languages in linear time,” Theoretical Computer Science, Vol. 267, No. 1-2, pp. 61-82.
    47.Hindle, D., 1983, User Manual for Fidditch, A Deterministic Parser, Naval Research Laboratory Technical Memorandum 7590-142, Naval Research Laboratory, Washington, D.C.
    48.Ho, E. K. S. and Chen, L. W., 2002, “Extracting error productions from a neural network-based LR parser,” Neurocomputing, Vol. 47, No. 1-4, pp. 189-206.
    49.Ho, T. H., Yang, K. C., Chienq, L. F. and Lee, L. S., 1998, “Statistics-based segment pattern lexicon-A new direction for Chinese language modeling,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 1, pp. 169-172.
    50.Hsu, W. L. and Chen, Y. S., 1999, “On phoneme-to-character conversion systems in Chinese processing,” Journal of the Chinese Institute Engineers, Vol. 22, No. 5, pp. 573-579
    51.Kasabov, N. K., 1996, “Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid systems,” Fuzzy Sets and Systems, Vol. 82, No. 2, pp. 135-149.
    52.Lai, B. Y. and Sun, M. S., 1997, “Chinese word segmentation and part-of-speech tagging in one step,” Proceedings of International Conference on Computational Linguistics, pp. 229-236.
    53.Lam, S. W. and Srihari, S. N., 1991, “Frame-based knowledge representation for multi-domain document layout analysis,” Proceedings, IEEE International Conference on Systems, Man, and Cybernetics, Decision Aiding for Complex Systems, Vol. 3, pp. 1859-1864.
    54.Lane, P. C. R. and Henderson, J. B., 2001, “ Incremental syntactic parsing of natural language corpora with simple synchrony networks,” IEEE Transactions on Knowledge and Data Engineering, Vol. 13, No. 2, pp. 219-231.
    55.Law, H. H. C. and Chan, C., 1996, “Ergodic multigram HMM integrating word segmentation and class tagging for Chinese language modeling,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 1, pp. 196-199.
    56.Lee, T. B., Hendler, J. and Lassila, O., 2001, “The semantic web,” Scientific American, pp. 1-18.
    57.Li, B. I., Lien, S., Sun, C. F. and Sun, M. S., 1991, “A maximal matching automatic Chinese word segmentation algorithm using corpus tagging for ambiguity resolution,” Proceedings of the Conference on Research on Computational Linguistics, pp. 135-146.
    58.Li, G. C., Liu, K. Y. and Zhang Y. K., 1988, “Identifying Chinese word and processing different meaning structures,” Journal of Chinese Information Processing, Vol. 2, pp. 45-53.
    59.Lin, X., 1992, “Visualization for the document space,” Proceedings of IEEE Visualization, pp. 274-281.
    60.Lo, W. S., Wong, P. F. and Siu, M. H., 2002, “Maximum likelihood algorithm on Chinese word segmentation,” The 6th International Conference on Signal Processing, Vol. 1, pp. 468-471.
    61.Lua, K. T. and Gan, K. W., 1994, “An application of information theory in Chinese word segmentation,” Computer Processing of Chinese and Oriental Languages, Vol. 8, No. 1, pp. 115-124.
    62.Ma, Y., Su, G., Li, J. and Li, S., 2003, “A novel text subject extraction method,” International Conference on Natural Language Processing and Knowledge Engineering, pp. 698-703.
    63.Manjula, D., Aghila, G. and Geetha, T. V., 2003, “Document knowledge representation using description logics for information extraction and querying,” Proceedings, International Conference on Information Technology: Coding & Computing [Computer & Communications], pp. 189-193.
    64.Marinov, M. and Zheliazkova, I., 2005, “An interactive tool based on priority semantic networks,” Knowledge-based Systems, Vol. 18, No. 2-3, pp. 71-77.
    65.McCarthy, J., 1958, “Programs with common sense,” Proceedings of the Symposium on the Mechanization of Thought Processes, pp. 522-529.
    66.Minsky, M., 1975, “A framework for representing knowledge,” The Psychology of Computer Vision, pp. 95-128.
    67.Mitri, M., 1993, “Combing semantic networks with multi-attribute utility models: An evaluative database indexing method,” Proceedings of the 9th Conference on Artificial Intelligence for Applications, pp. 462.
    68.Neumann, G., 1998, “Interleaving natural language parsing and generation through uniform processing,” Artificial Intelligence, Vol. 99, No. 1, pp. 121-163.
    69.Ngai, C. H., Chan, P. W., Yau, E. and Lyu, M. R., 2002, “XVIP: An XML-based video information processing system,” Proceedings of the 26th Annual International on Computer Software and Applications Conference, pp. 173-178.
    70.Nic, J. Y. and Briscobois, M., 1996, “On Chinese text retrieval,” Proceeding of SIGIR, pp. 225-233.
    71.Papp, Z., 1991, “A framework for cooperative numeric and symbolic signal processing in real-time,” The 8th IEEE Conference on Instrumentation and Measurement Technology, pp.489-494.
    72.Rahman, S. and Moghram, I. S., 1989, “Application of a rule-based technique to weekly load forecast,” Proceedings, IEEE Energy and Information Technologies in the Southeast, Vol. 1, pp. 380-385.
    73.Shieber, S. M., Schabes, Y., and Pereira, F. C. N., 1995, “Principles and implementation of deductive parsing,” The Journal of Logic Programming, Vol. 24, No. 1-2, pp. 3-36.
    74.Shishibori, M., Lee, S. S., Oono, M. and Aoe, J., 2002, “Improvement of the LR parsing table and its application to grammatical error correction,” Information Sciences, Vol. 18, No. 1-4, pp. 11-26.
    75.Sproat, R. and Shih, C. L., 1990, “A statistical method for finding word boundaries in Chinese text,” Computer Processing of Chinese and Oriental Languages, Vol. 4, pp. 336-351.
    76.Sun, M., Xu, D. and Tsou, B. K., 2003, “Integrated Chinese word segmentation and part-of-speech tagging based on the divide-and-conquer strategy,” International Conference on Natural Language Processing and Knowledge Engineering, pp. 610-615.
    77.Talluru, L. R. and Akgiray, V., 1988, “Knowledge representation for investment strategy selection,” Proceedings of the 21st Annual Hawaii International Conference on Decision Support and Knowledge Based Systems Track, Vol. 3, pp. 189-196.
    78.Vranes, S. and Stanojevic, M., 1994, “PROLOG/Rex-A way to extend PROLOG for better knowledge representation,” IEEE Transactions on Knowledge and Data Engineering, Vol. 6, pp. 22-37.
    79.Wong, P. K. and Chan, C., 1996, “Chinese word segmentation based on maximum matching and word binding force,” Proceedings of International Conference on Computational Linguistics, pp. 200-203.
    80.Xu, D. and Zheng, G., 1995, “Logical object as a basis of knowledge based systems (KBSs),” Computational Science and Technology, Vol. 10, No. 5, pp. 425-438.
    81.Yeh, C. L. and Lee, H. J., 1991, “Rule-based word identification for Mandarin Chinese sentences-A unification approach,” Computer Processing of Chinese and Oriental Languages, Vol. 5, No. 2, pp. 97-118.
    82.Zarri, G. P., 1995, “The narrative knowledge representation language, a knowledge-based approach for representing the meaning of textual documents,” Proceedings of the 3rd International Conference on Document Analysis and Recognition, Vol. 2, pp. 545-548.
    83.Zhang, M. Y., Lu, Z. D. and Zou, C. Y., 2004, “ A Chinese word segmentation based on language situation in processing ambiguous words,” Information Sciences, Vol. 162, No. 3, pp. 275-285.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE