簡易檢索 / 詳目顯示

研究生: 周科甫
Chou, Ko-Fu
論文名稱: 具蓄電池和飛輪儲能源以風力開關式磁阻發電機為主之直流微電網
A wind driven switched-reluctance generator based DC micro-grid supported by energy storages of battery and flywheel
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 劉添華
陳盛基
龔應時
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 187
中文關鍵詞: 微電網開關式磁阻發電機開關式磁阻馬達儲能系統飛輪蓄電池
外文關鍵詞: Micro-grid, switched-reluctance generator, switched-reluctance motor, energy storage system, flywheel, battery
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發以風力開關式磁阻發電機為主之直流微電網,其配具有蓄電池儲能緩衝及三相負載變頻器。對於所開發之開關式磁阻發電機,首先適當地設計其電力電路,再應用磁滯電流控制脈寬調變切換機構,以對抗反電動勢之負作用而增進線圈電流之控制強健性。接著,經由電壓命令之適當設定、強健控制和換相前移,獲得於變動風速及負載下良好發電操控性能。
    隨風速變化之開關式磁阻發電機輸出電壓,經由電流注入推挽式直流/直流介面轉換器昇壓及調控,建立具穩定電壓之共同直流匯流排。此直流/直流轉換器配裝有主動式箝位電路,以增進其操作之可靠性及效率。所建直流微電網構裝有儲能系統,其合一飛輪及一鉛酸蓄電池組。開關式磁阻馬達驅控之飛輪經一雙向直流/直流介面轉換器連接至共通直流鏈,由適當設計之開關式磁阻馬達驅動系統及介面轉換器之電力電路及控制機構,獲得良好之充放電特性,如同一般開關式磁阻發電機,此開關式磁阻馬達驅控之飛輪在施放電發電機模式下,其電壓命令亦隨逐漸降低之轉速其電壓追控誤差自動低調降。至於蓄電池儲能系統採用雙向降/昇壓直流/直流轉換器。透過適當之電力電路及控制器設計,可於放電模式下獲得良好之共通直流電壓調節特性,以及良好之充電效能。
    為從事所建微電網之實測之性能評估,設計製作一個三相負載變頻器,其控制採單相每相為主之控制架構,應用簡易之強健控制,可於線性及非線性負載下獲得良好的輸出電壓波形。所建各組成電力電路之控制演算法則均以數位訊號處理器全數位化實現,並由實測結果驗證所建之微電網正常操作及控制性能。


    This thesis develops a wind switched-reluctance generator (SRG) based DC micro-grid with battery energy storage buffer and three-phase load inverter. In the developed SRG, its power circuit is properly designed, and the hysteresis current-controlled PWM switching is applied to enhance the winding current control robustness against the adverse effects of back electromotive force. Then good generating performance under varying wind speed and load is achieved via proper voltage command setting, robust control and commutation shift.
    The SRG generated speed-dependent voltage is boosted and controlled by a current-fed push-pull interface converter to establish voltage well-regulated common DC bus. An active clamp circuit is equipped for increasing the operation reliability and efficiency of this DC/DC converter. The proposed micro-grid is supported by an energy storage system consisting of a flywheel and a lead-acid battery bank. The switched- reluctance motor (SRM) driven flywheel system is interfaced to the common DC bus through a bidirectional DC/DC converter. Good charging and discharging operation characteristics are obtained by properly designing the schematics and control schemes for the SRM drive and its followed interfaced converter. Similar to those of SRG, the voltage command of the SRM-driven flywheel in generating mode is also automatically adapted to the decreasing rotor speed and the voltage tracking error during the stored energy discharging. As to the battery energy storage system a bilateral buck/boost DC/DC converter is employed as an interface converter. Through proper circuit and controller designs, good common-bus DC voltage regulation in discharging mode and better charging performance are preserved.
    For making the performance experimental assessment, a three-phase load inverter is designed and implemented. The per-phase based control scheme is adopted, and the simple robust control is applied to yield good output voltage waveforms under linear and nonlinear loads. The control algorithms of all constituted power stages are realized fully digitally using digital signal processor (DSP). Normal operations and control performance of the established micro-grid are demonstrated experimentally.

    誌謝 . a 摘要 b 目錄 c 第一章、簡介 d 第二章、微電網和開關式磁阻電機之基礎 e 第三章、風力開關式磁阻發電機與介面轉換器 f 第四章、開關式磁阻馬達驅控飛輪儲能系統 g 第五章、鉛酸蓄電池儲能系統 h 第六章、具三相三線負載變頻器之開關式磁阻發電機為主直流微電網總體性能評估 i 第七章、結論 j 附錄: 英文論文 k

    A. Micro-Grid Systems
    [1] N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgids, ”IEEE Power Energy, vol. 5, no. 4, pp. 78-94, 2007.
    [2] W. Kramer, S. Chakraborty, B. Kroposki and H. Thomas, “Advanced power electronic interfaces for distributed energy systems: part 1: systems and topologies,” Technical Report NREL/TP-581-42672 March 2008.
    [3] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang and F.C. Lee, “Future electronic power distribution systems a contemplative view,” IEEE OPTIM, 2010, pp.1369-1380.
    [4] H. Kakigano, M. Nomura and T. Ise, “Loss evaluation of DC distribution for residential houses compared with AC system,” in Proc. IEEE IPEC, 2010, pp. 480-486.
    [5] X. Liu , P. Wang and P. C. Loh, “A hybrid AC/DC microgrid and its coordination control ,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 278-286, 2011.
    [6] H. Kakigano, Y. Miura, T. Ise and R. Uchida, “DC voltage control of the DC micro-grid for super high quality distribution,” in Proc. IEEE PCCON, 2007, pp. 518-525.
    [7] S. Morozumi, “Micro-grid demonstration projects in Japan,” in Proc. IEEE PCCON, 2007, pp. 635-642.
    [8] H. Kakigano, Y. Miura and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, 2010.
    [9] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512-2527, 2011.
    [10] Y. Ito, Y. Zhongqing and H. Akagi, “DC micro-grid based distribution power generation system,” in Proc. IEEE IPEMC., 2004, pp. 1740-1745.
    [11] Díaz, C. González-Morán, J. Gómez-Aleixandre and A. Diez, “Scheduling of droop coefficients for frequency and voltage regulation in isolated microgrids,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 489-496, 2010.
    [12] Majumder, B. Chaudhuri, A. Ghosh, R. Majumder, G. Ledwich and F. Zare, “Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop,” IEEE Trans. Power Syst., vol. 25, no. 2, pp. 796-808, 2010.
    [13] Majumder, G. Ledwich, A. Ghosh, S. Chakrabarti and F. Zare, “Droop control of converter-interfaced microsources in rural distributed generation,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2768-2778, 2010.
    [14] S. W. Mohod and M. V. Aware Micro, “Wind power generator with battery energy storage for critical load,” IEEE Syst. J., vol. 6, no. 1, pp. 118-125, 2012.
    [15] L. A. S. Ribeiro, O. R. Saavedra, S. L. Lima, and J. G. Matos, “Isolated micro-grids with renewable hybrid generation: the case of lençóis island,” IEEE Trans. Sustainable Energy, vol. 2, no. 1, pp.1-11, 2011.
    [16] R. H. Lasseter, J. H. Eto, B. Schenkman, J. Stevens, H. Vollkommer, D. Klapp, E. Linton, H. Hurtado and J. Roy, “CERTS microgrid laboratory test bed,” IEEE Trans. Power Del., vol. 26, no. 1, pp. 325-332, 2011.
    [17] J. A. Baroudi, V. Dinavahi and A. M. Knight, “A review of power converter topologies for wind generators,” in Proc. IEEE IEMDC, 2005, pp. 458-465.
    [18] H. Polinder, F. F. A. van der Pijl, G. J. de Vilder and P. J. Tavner, “Comparison of direct-drive and geared generator concepts for wind turbines,” IEEE Trans. Energy Convers., vol. 21, no. 3, pp. 725-733, 2006.
    [19] T. Yamaguchi, N. Yamamura and M. Ishda, “Study for small size wind power generating system using switched reluctance generator,” in Proc. IEEE ICIT., 2004, pp. 1510-1515.
    [20] S. Narla, Y. Sozer and I. Husain, “Switched reluctance generator controls for optimal power generation and battery charging,” in Proc. IEEE ECCE., 2011, pp. 3575-3581.
    B. Switched-Reluctance Motors
    [21] P. C. Sen, Principles of Electric Machines and Power Electronics, 2nd ed., New Jersey: John Wiley & Sons, Inc., 1997.
    [22] H. C. Lovatt, M. C. Clelland and J. M. Stephenson, “Comparative performance of singly salient reluctance, switched reluctance and induction motors,” in Proc. IEE Conf. Elect. Mach. and Drives, 1997, pp. 361-365.
    [23] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV: design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000.
    [24] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
    [25] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, New York: CRC Press, 2001.
    [26] Y. C. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang and C. M. Liaw, ” Development of a switched-reluctance motor driven cooling fan, ” R.O.C. 32th Symposium on Electrical Power Engineering, 2011, December 2-3, Taipei, Taiwan, pp. 1565-1572.
    [27] M. Cacciato, A. Consoli, G. Scarcella and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. IEEE PESC, 2008, pp. 1235-1241.
    [28] Kaiyuan Lu, P. O. Rasmussen, S. J. Watkins and F. Blaabjerg, “A new low-cost hybrid switched reluctance motor for adjustable-speed pump applications,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 314-321, 2011.
    [29] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
    [30] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. on Ind. Electronic., vol. 58, no. 5, pp. 1763-1775, May 2011.
    [31] M. D. Hennen, M. Niessen, C. Heyers. H. J. Brauer and R. W. D. Doncher, “Development and control of an integrated and distributed inverter for a fault tolerant five-phase switched reluctance traction drive,” in Proc. IEEE EPE/PEMC, 2010, pp. 11-17.
    [32] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 3, no. 5, pp. 1079-1087, 1995.
    [33] T. J. E. Miller, “Optimal design of switched reluctance motors, ”IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
    [34] B. Bilgin, A. Emadi and M. Krishnamurthy, “Design considerations for switched reluctance machines with a higher number of rotor poles,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3745-3756, 2012.
    [35] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Proc. IEEE IAS, 1996, vol. 1, pp. 68-75.
    [36] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Applicat., vol. 39, no. 4, pp. 1118-1126, 2003.
    [37] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IEE Proc. Elect. Power Applicat., 2001, vol. 148, no. 4. pp. 345-352, 2001.
    [38] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
    [39] H. Hannoun, M. Hilairet and C. Marchand, “Experimental validation of a switched reluctance machine operating in continuous-conduction mode,” IEEE Trans. Vehicular Technology, vol. 60, no. 4, pp. 1453-1460, 2011.
    [40] Z. Lin, D. Reay, B. Williams and X. He, “High-performance current control for switched reluctance motors based on on-line estimated parameters,” in Proc. IEEE IET., vol. 4, no. 1, pp. 67-74, 2010.
    [41] H. Hannoun, M. Hilairet and C. Marchand, “Design of an SRM speed control strategy for a wide range of operating speeds,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2911-2921 2010.
    [42] C. Moron, A. Garcia, E. Tremps, and J. A. Somolinos, “Torque control of switched reluctance motors,” IEEE Trans. Magnetics, vol. 48, no. 4, pp. 1661-1664, 2012.
    [43] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
    [44] J. J. Gribble, P. C. Kjaer and T. J. E. Miller, “Optimal commutation in average torque control of switched reluctance motors,” IEE Proc. Elect. Power Applicat., 1999, vol. 146, no. 1, pp. 2-10.
    [45] R. Orthmann and H.P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” in Proc. IEE Conf. Power Electron. and Applicat., 1993, vol. 6, pp. 20-25.
    [46] K. I. Hwu and C.M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
    [47] D. E. Cameron, J. H. Lang and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 1250-1255, 1992.
    [48] J. Y. Chai, Y. W. Lin and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proc. Elect. Power Applicat., vol. 153, no. 3, pp. 348-360, May 2006.
    [49] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling.” IET Electric Power Applications, vol. 4, no. 5, pp. 380-396, 2010.
    [50] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
    [51] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998.
    [52] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
    [53] S. Mir, I. Husain and M.E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, 1997.
    [54] K. J. Tseng, S. Cao and J. Wang, “A new hybrid C-dump and buck-fronted converter for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 47, no. 6, pp. 1228-1236, 2000.
    [55] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Applicat., vol. 147, no. 5, pp. 337-344, 2000.
    [56] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7,pp. 3198-3215, 2009.
    [57] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
    [58] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Transactions on Power Electronics, vo. 25, no. 5, pp. 1135-1148, 2010.
    [59] K. T. Chau, T. W. Ching, C. C. Chan and M. S. W. Chan, “A novel zero-current soft-switching converter for switched reluctance motor drives,” in Proc. IEEE IECON, 1998, vol. 2, pp. 893-898.
    [60] Y. Murai, J. Cheng and M. Yoshida, “New soft-switched reluctance motor drive circuit,” IEEE Trans. Ind. Appl., vol. 35, no. 1, pp. 78-85, 1999.
    [61] H. Goto, H. J. Guo and O. Ichinokura, “A novel drive method for switched reluctance motors using three-phase power modules,” in Proc. EPE-PEMC, 2006, pp. 1027-1031.
    [62] Y. C. Kim, Y. H. Yoon, B. K. Lee, J. Hur and C. Y. Won, “A new cost effective SRM drive using commercial 6-switch IGBT modules,” in Proc. IEEE PESC, 2006, pp. 1-7.
    [63] C. M. Liaw and H. C. Chang, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. PP, no. 99, pp. 1-1, 2010.
    C. Switched-Reluctance Generators
    [64] A. Radun, “Generating with the switched reluctance motor,” in Proc. IEEE APEC, 1994, vol. 1, pp. 41-47.
    [65] D. A. Torrey, “Switched reluctance generators and their control,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 3-14, 2002.
    [66] P. Chancharoensook and M. F. Rahman, “Control of a four-phase switched reluctance generator: experimental investigations,” in Proc. IEEE IEMDC, 2003, vol. 2, pp. 842-848.
    [67] N. K. Singh, J. E. Fletcher, S. J. Finney, D. M. Grant and B. W. Williams, “A novel switched reluctance generator inverter topology for AC power generation,” in Proc. IET PEMD, 2006, pp. 32-35.
    [68] H. Chen and Z. Shao, “Turn-on angle control for switched reluctance wind power generator system,” in Proc. IEEE IECON, 2004, pp. 2367-2370.
    [69] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher and P. Wheeler, “Control of a switched reluctance generator for variable-speed wind energy applications,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 781-791, 2005.
    [70] M. Menne, R. B. Inderka and R. W. De Doncker, “Critical states in generating mode of switched reluctance machines,” in Proc. IEEE PESC, 2000, vol. 3, pp. 1544-1550.
    [71] I. Husain, A. Radun and J. Nairus, “Fault analysis and excitation requirements for switched reluctance-generators,” IEEE Trans. Energy Convers., vol. 17, no. 1, 2002.
    [72] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
    [73] A. Fleury, D. Andrade, A. W. F. V. Silveira, F. S. L. Ribeiro, A. Coelho and L. G. Cabral, “Dependence of the switched reluctance generator output on the speed and the excitation voltage,” in Proc. IEEE IECON, 2008, pp. 1101-1105.
    [74] Y. Sozer and D. A. Torrey, “Closed loop control of excitation parameters for high speed switched-reluctance generators,” IEEE Trans. Power Electron., vol.19, no. 2, pp. 355-362, 2004.
    [75] D. B. Wicklund and D. S. Zinger, “Voltage feedback signal conditioning in switched reluctance generation systems,” in Proc. IEEE APEC, 2000, vol. 1, pp. 376-380.
    [76] A. W. F. V. Silveira, D. A. Andrade, L. C. Gomes, A. Fleury, C. A. Bissochi, “DSP Based SRG Load Voltage Control,” in Proc. IEEE VPPC., 2010, pp. 1-5.
    [77] C. Mademlis and I. Kioskeridis, “Optimizing performance in current-controlled switched reluctance generators,” IEEE Trans. Energy Convers., vol. 20, no. 3, pp. 556-565, 2005.
    [78] P. Asadi, M. Ehsani and B. Fahimi, “Design and control characterization of switched reluctance generator for maximum output power,” in Proc. IEEE APEC, 2006, pp. 1639-1644.
    [79] A. W. F. V. Silveira, D. A. Andrade, A. V. S. Fleury, L. C. Gomes and C. A. Bissochi, “Control of the SRM operating as a motor/generator,” in Proc. IEEE ISIE, 2009, pp. 1558-1563.
    [80] B. Fahimi, A. Emadi and R. B. Sepe Jr, “A switched reluctance machine-based starter/alternator for more electric cars,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 116-124, 2004.
    [81] N. Schofield and S. Lomg, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, 2009.
    D. Flywheel Energy Storage Systems
    [82] J. L. S. Neto, R. De Andrade, L. G. B. Rolim, A. C. Ferreira, G. G. Sotelo and W. Suemitsu, “Experimental validation of a dynamic model of a SRM used in superconducting bearing flywheel energy storage system,” IEEE Trans. Ind. Electron., vol. 3, pp. 2492-2497, 2006.
    [83] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher and P. Wheeler, “Power smoothing using a flywheel driven by a switched reluctance machine,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1086-1093, 2006.
    [84] Jr. R. Andrade, G. G. Sotelo, A. C. Ferreira, L. G. B. Rolim, J. L. S. Neto, R. M. Stephan, W. I. Suemitsu and R. Nicolsky, “Flywheel Energy Storage System Description and Tests,” IEEE Trans. Ind. Electron., vol. 17, no. 2, pp. 2154-2157, 2007.
    [85] A. Rajapakshe, U. K. Madawala and D. Muthumani, “A model for a flywheel driven by a grid connected switch reluctance machine,” in Proc. IEEE ICSET, 2008, pp. 1025-1030.
    [86] R. Pena-Alzola, R. Sebastian, J. Quesada and A. Colmenar, “Review of flywheel based energy storage systems,” in Proc. Power Engineering, Energy and Electrical Drives (POWERENG) Conference, 2011, pp. 1-6.
    E. Interface Power Converters
    [87] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
    [88] M. Delshad and H. Farzanehfard, “A soft switching flyback current-fed push pull DC-DC Converter with active clamp circuit,” in Proc. IEEE PECON, 2008, pp. 203-207.
    [89] D. G. Holmes, P. Atmur, C. C. Beckett, M. P. Bull, W. Y. Kong, W. J. Luo, D. K. C. Ng, N. Sachchithananthan, P. W. Su, D. P. Ware and P. Wrzos, “An innovative, efficient current-fed push-pull grid connectable inverter for distributed generation systems,” in Proc. IEEE PESC, 2006, pp. 1-6.
    [90] J. M. Kwon, E. H. Kim, B. H. Kwon and K. H. Nam, “High-efficiency fuel cell power conditioning system with input current ripple reduction,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 826-834, 2009.
    [91] M. Delshad and H. Farzanehfard, “A soft switching flyback current-fed push pull DC-DC Converter with active clamp circuit,” in Proc. IEEE PECON, 2008, pp. 203-207.
    [92] D. C. Martins and R. Demonti, “Interconnection of a photovoltaic panels array to a single-phase utility line from a static conversion system,” in Proc. IEEE PESC, 2000, vol. 3, pp. 1207-1211.
    [93] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp. 381-389.
    [94] N. M. L. Tan, T. Abe and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2011.
    [95] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC, 1995, pp. 887-892.
    [96] L. Palma and P. N. Enjeti, “A modular fuel cell, modular DC-DC converter concept for high performance and enhance reliability,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1437-1443, 2009.
    [97] M. Jain, Jain, P.K. and M. Daniele, “Analysis of a bi-directional DC-DC converter topology for low power application,” in Proc. IEEE CCECE, 1997, vol.2, pp. 548-551.
    [98] S. Jalbrzykowski, A. Bogdan and T. Citko, “A dual full bridge resonant class-e bidirectional DC-DC converter,” IEEE Trans. Ind. Electron., 2011, vol. 58, no. 9, pp. 3879-3883.
    [99] S. Zhang, O. Thomsen and M. Andersen, “Optimal design of a push-pull-forward half-bridge (PPFHB) bidirectional DC-DC converter with variable input voltage” IEEE Trans. Ind. Electron., 2012, vol. 59, no. 7, pp. 2761-2771.
    [100] E. Hiraki, K. Hirao, T. Tanaka and T. Mishima, “A push-pull converter based bidirectional DC-DC interface for energy storage systems,” in Proc. IEEE EPE, 2009, pp. 1-10.
    [101] D. Xu, C. Zhao and H. Fan, “A PWM plus phase-shift control bidirectional DC-DC converter,” IEEE Trans. Power Electron., vol. 19, no. 3, pp. 666-675, 2004.
    [102] F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
    [103] H. Xu, G. Ma, C. Sun, X. Wen and L. Kong, “Implementation of a bi-directional DC-DC converter in FCEV,” in Proc. ICEMS, 2003, vol. 1, pp. 375-378.
    [104] M. Cacciato, F. Caricchi, F. Giuhlii and E. Santini, “A critical evaluation and design of bi-directional DC/DC converters for super-capacitors interfacing in fuel cell applications,” in Proc. IEEE IAS, 2004, vol. 2, no.2, pp. 1127-1133.
    [105] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp. 381-389.
    [106] F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
    [107] C. Zhao, S. D. Round and J. W. Kolar, “An isolated three-port bidirectional DC-DC converter with decoupled power flow management,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2443-2453, 2008.
    [108] Y. Du, X. Zhou, S. Bai, S. Lukic and A. Huang, “Review of non-isolated bi-directional DC-DC converters for plug-in hybrid electric vehicle charge station application at municipal parking decks,” in Proc. APEC, 2010, pp. 1145-1151.
    [109] Z. Qian, O. Abdel-Rahman and I. Batarseh, “An integrated four-port DC/DC converter for renewable energy applications,” IEEE Trans. Power Electron., vol. 25, no. 7, pp. 1877-1887, 2010.
    [110] H. C. Chang and C. M. Liaw, “On the front-end converter and its control for a battery powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008.
    [111] H. R. Karshenas, H. Daneshpajooh, A. Safaee, A. Bakhshai and P. Jain, “Basic families of medium-power soft-switched isolated bidirectional DC/DC converters,” in Proc. IEEE PEDSTC., 2011, pp. 92-97.
    [112] S. R. Moon, K. C. Lee, J. M. Kim and D. H. Koo, “Closed-loop regenerative efficiency testing with electric vehicle bidirectional DC/DC converter,” in Proc. IEEE APEC., 2012, pp. 2461-2466.
    [113] J. Fu and O. Ojo, “Steady-state analysis and optimization of bidirectional DC/DC converters,” in Proc. IEEE ISOE., 2011, pp. 419-424.
    F. PWM Inverters
    [114] B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall, 2001.
    [115] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, New Jersey: Wiley-IEEE Press, 2003.
    [116] A. M. Hava, R. J. Kerkman and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999.
    [117] Y. Wue, L. Chang, S. B. Kjær, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
    [118] B. S. Prasad, S. Jain and V. Agarwal, “Universal single-stage grid-connected inverter,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 128-137, 2008.
    [119] Q. Li and P. Wolfs, “A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1320-1333, 2008.
    [120] A. C. Kyritsis, E. C. Tatakis and N. P. Papanikolaou, “Optimum design of the current-source flyback inverter for decentralized grid-connected photovoltaic systems,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 281-293, 2008.
    [121] T. Shimizu and S. Suzuki, “A single-phase grid-connected inverter with power decoupling function,” in Proc. IEEE IPEC, 2010, pp. 2918-2923.
    [122] J. Selvaraj and N. A. Rahim, “Multilevel inverter for grid-connected PV system employing digital PI controller,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 149-158, 2009.
    [123] R. A. Mastromauro, M. Liserre and A. Dell'Aquila, “Study of the effects of inductor nonlinear behavior on the performance of current controllers for single-phase PV grid converters,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2043-2052, 2008.
    [124] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Linear current control scheme with series resonant harmonic compensator for single-phase grid-connected photovoltaic inverters” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2724-2733, 2008.
    [125] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4492-4500, 2009.
    [126] H. Kim and K. H. Kim, “Filter design for grid connected PV inverters,” in Proc. IEEE ICSET, 2008, pp.1070-1075.
    [127] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. IEEE ICPST, 2000, vol. 3, pp. 1659-1664.
    [128] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683-689, 1999.
    [129] S. H. Hwang and J. M. Kim, “Dead time compensation method for voltage-fed PWM inverter,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 1-10, 2010.
    [130] H. Deng, R. Oruganti and D. Srinivasan, “A simple control method for high-performance UPS inverters through output-impedance reduction,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 888-898, 2008.
    [131] K. Selvajyothi and P. A. Janakiraman, “Reduction of voltage harmonics in single phase inverters using composite observers,” IEEE Trans. Power Del., vol. 25, no. 2, pp. 1045-1057, 2010.
    [132] M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: A survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
    [133] Y. W. Li, D. M. Vilathgamuwa and P. C. Loh, “A grid-interfacing power quality compensator for three-phase three-wire microgrid applications,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 1021-1031, 2006.
    [134] M. Saghaleini and B. Mirafzal, “Reactive power control in three-phase grid-connected current source boost inverter,” in Proc. IEEE APEC, 2012, vol. 1, pp. 904-910.
    [135] B. Sahan, S. V. Araujo, C. Noding and P. Zacharias, “Comparative evaluation of three-phase current source inverters for grid interfacing of distributed and renewable energy systems,” IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2304-2318, 2011.
    [136] B. Mirafzal, M. Saghaleini and A. K. Kaviani, “An SVPWM-based switching pattern for stand-alone and grid-connected three-Phase single-stage boost inverters,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1102-1111, 2011.
    [137] J. M. Espí, J. Castelló, R. García-Gil, G. Garcerá and E. Figueres, “An adaptive robust predictive current control for three-phase grid-connected inverters,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3537-3546, 2011.
    [138] D. C. Patel, J. Castelló, R. R. Sawant and M. C. Chandorkar, “Three-dimensional flux vector modulation of four-leg sine-wave output inverters,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1261-1269, 2010.
    G. Others
    [139] Y. C. Chang, “Development of a switched-reluctance generator and its application to the establishment of microgrid system” Ph.D. dissertation, Department of Electrical Engineering National Tsing Hua University, ROC, 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE