簡易檢索 / 詳目顯示

研究生: 吳聲旺
論文名稱: 核能結構材料高熵合金之單射束輻射效應研究
Single-Ion Beam Radiation Effect on High Entropy Alloy for Nuclear Structural Materials
指導教授: 開執中
陳福榮
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
中文關鍵詞: 高熵合金輻射損傷穿透式電子顯微鏡
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 『奈米高熵合金』即至少以五個主要元素配置合金,每個主要元素含量至少超過5 at%,但最多不超過35 at %。有別於傳統合金系統,高熵合金乃是以創新的合金設計概念來配置合金元素,且具有優異的機械強度,有潛力成為高溫材料之主要選擇,以助於高溫高效率發電系統上之研發。
    □本論文主要目的是研究新發展之奈米高熵合金應用於先進核反應器之可行性。高熵合金系統種類繁多,本研究所使用的系統為Ti0.5CrCo1.5FeNi1.5五元高熵合金。為了解高溫高能量粒子照射下,材料之輻射損傷效應,本研究規劃了一系列的實驗,以加速器離子束作為輻射損傷模擬的粒子射源,使用鋁正三價離子而在1.26um處達到10dpa之損傷,配合TEM觀察微結構之變化進而評估其對材料性質之影響。由實驗結果發現:奈米高熵合金其微結構並不複雜,多主元素原子仍可排成FCC晶格且具有可分析及鑑定的特性,為典型之奈米結構。由於多個主成分之影響,造成晶格扭曲,使XDR繞射強度下降﹔且具有罕見的高溫析出硬化現象,在800℃、10 h的時效處理下硬度為未時效前的1.33倍,此硬化的現象歸因於γ’相的析出。另外,由TEM觀察到η相在高溫的析出與成長,其中η與母相γ有特定的取向關係為[112] γ // [0001] η 及 (1 1) γ // (10 0) η。在低於700℃進行照射實驗,在照射區域內發現缺陷團的出現,缺陷團的尺寸及數密度會受到照射溫度的影響。溫度約高則缺陷尺寸越大,在10dpa的劑量下400℃至700℃內缺陷尺寸對溫度的變化為5.811×10-3nm/℃﹔缺陷尺寸也隨著劑量增加而變大,500℃下缺陷大小對劑量變化之斜率為0.167nm/dpa,而700的斜率為0.154nm/dpa。缺陷團數密度也會受到照射溫度的影響500℃照射時缺陷總數密度對劑量的斜率為2.666×1021/dpa﹔而700℃照射時斜率為2.333×1020/dpa 。700、800、900℃,10dpa之劑量照射下,只有在700℃照射條件下於佈植區內發現糾結之差排與點缺陷聚集體(直徑小於10nm),這可能是因為800,900℃溫度太高使得缺陷退火回復消失。


    章節目錄 章節 頁次 摘要 I 章節目錄 Ⅲ 圖目錄 V 表目錄 Ⅷ 第一章 研究動機 1 第二章 文獻回顧 4 2-1金屬材料的輻射損傷 4 2-2輻射損傷與核能結構材料 7 2-2.1核融合結構材料 8 2-2.2核分裂結構材料 9 2-3高熵合金 11 2-3.1鎳基超合金發展與應用 11 2-3.2鎳基超合金的強化機制 12 2-3.3非晶質合金合金發展與應用 14 2-3.4非晶質合金製程 15 2-3.5非晶質合金的優越特性 15 2-3.6高熵合金開發背景 16 2-3.7高熵合金的特點 17 第三章 實驗原理與方法 29 3-1 SRIM程式模擬計算 30 3-2 離子佈植照射系統 31 3-2.1 加速器 31 3-2.2入射粒子與靶材之交互@用 31 3-2.3 離子束束離子照射系統 32 3-3 照射實驗流程 33 3-4 實驗分析 33 3-4.1 電子顯微鏡原理 33 3-4.2 電子束與物質交互作用 34 3-4.3 電子顯微鏡系統 35 3-4.4 電子槍 35 3-4.5 X-光能量分散光譜儀(EDS) 37 3-4.6電子能量損失能譜儀 38 3-5 TEM試片製備 41 第四章 實驗結果與討論 51 4-1機械性質測試 51 4-2 基本微結構分析 52 4-2.1 SEM分析(就母材、TiN、γ、γ’、η、EDX、時效後變化) 54 4-2.2 TEM微結構分析 54 4-3單射束照射實驗 56 4-3.1 400℃、10 dpa照射實驗 56 4-3.2 500℃、10 dpa照射實驗 57 4-3.3 700℃10 dpa照射實驗 58 4-3.4 500℃、700℃各1dpa照射實驗 59 4-3.5 800℃、900℃各10dpa照射實驗 60 第五章 結論 75 第六章 未來研究方向 77 參考文獻 78

    參考文獻
    [1] Donald R. Olander, “Fundamental aspects of nuclear reactor fuel elements”, 1976.
    [2] 楊文斗,“反應堆材料學”, 原子能出版社,p.144, 2000.
    [3] E.E.Bloom,W.R.Martin,J.O.Stiegler,and.R.Weir,J.Nucl.Nater.,22:68(1967).
    [4] E.E. Bloom and J.O. Stiegler, in ASTM Special Technical Publication 484,P451,American Society for Testing Materials,Philadelphia,1970.
    [5] W.K. Appleby et al., in Radiation-Induced Voids in Metals, Albany,N.Y.,James W. Corbett and Louis C. Ianniello (Eds.), USAEC Symposium Seres,CONF-710601,p.166,1971.
    [6] D.Kramer et al., in ASTM Special Technical Publication 484, p.509,American Society for Testing and aterials,Philadelphia,1970.
    [7] H.R. Brager and J.L. Straalsund, J.Nucl.Mater.,46:134(1973).
    [8] A. Seger, On the Theory of Radiation Damage and Radiation Hardening, in Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva,1958, Vol.6, P250,United Nations, New York,1958.
    [9] T.t. Claudson, R.W. Barker, and Fish,Nucl.Appl.Technol,9:10(1970).
    [10] S. D. Harkness and Che-Yu Li, Met Trans.,2:1457(1971).
    [11] 萬發榮,“金屬材料的輻照損傷”, 科學出版社, 1993.
    [12] M. Saito, A. Hasegawa, S.Ohtsuks, K. Abe, J. Nucl. Mater. 258-263 (1998) 1562.
    [13] 中正化學諮詢月刊12期2001.9
    [14] 葉陶然,熱核融合研究,核研季刊13期1995.4
    [15] 林銘政,Tokamak核融合技術之研究,台電工程月刊574期1996.6
    [16] Weston M. Stacey, Jr.,Fusion:An Introduction to the Physics and Technology of Magnetic Confinement Fusion,1984,A Wiley-Interscience publication.
    [17] 曾煥華,“向核融合挑戰”,1986, 銀禾文化出版商,見圖2-6
    [18] R. H. Jones, D. Steiner, H. L. Heinisch, G. A. Newsome, H. M Kerch, J. Nucl. Mater. 245 (1997) 87-107.
    [19] E.V. Dyomina , P. Fenici , V.P. Kolotov , M. Zucchetti Journal of Nuclear Materials 258-263 (1998) 1784-1790.
    [20] L.L. Snead, R.H. Jones, A. Kohyama, P. Fenici, J. Nucl. Mater. 233-237 (1996) 26-36.
    [21] P. Fenici, A.J. Frias Rebelo, R.H. Jones, A. Kohyama, L.L. Snead, J. Nucl. Mater. 258-263 (1998) 215.
    [22] R.H. Jones, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama, B. Riccardi, L.L. Snead, W.J. Weber, J. Nucl. Mater. 307-311(2002) 1057-1072
    [23] B. Riccardi, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama, R.H. Jones, L.L. Snead, J. Nucl. Mater. 329-333(2004) 56-65
    [24] 黃慶東等,核能發電機本課程訓練教材,B.3-92~94,清華大學原子科學院編印
    [25] C. T. Sims, and W. C. Hagel, “The Superalloys”, John Wiley & Sons, New York, 1972.
    [26] N. F. Mott and F. R. N. Nabarro, Report of the Conference on Strength of Solids, Physical Society, 1948, pp. 1-19.
    [27] R. M. N. Pelloux and N. J. Grant, Trans. Met. Soc. AIME, 218, 232-237, (1960).
    [28] R. L. Fleischer, Acta Met., 11, 203-209, (1963).
    [29] R. G. Davies and N. S. Stoloff, Trans. Met. Soc. AIME, 233, 714-719, (1965).
    [30] N. S. Stoloff and R. G. Davies, Prog. Mat. Sci., 13, No. 1, 3-84, (1966).
    [31] P. H. Thornton and R. G. Davies, Met. Trans., 1, 549-550, (1970).
    [32] P. Beardmore, R. G. Davies, and T. L. Johnston, Trans. Met. Soc. AIME, 245, 1537-1545, (1969).
    [33] R. G. Davies and T. L. Johnston, Ordered Alloys: Structural Applications and Physical Metallurgy, Claitors, Baton Rouge, Louisiana, 447-470, (1970).
    [34] S. M. Copley and B. H. Kear, Trans. Met. Soc. AIME, 239, 984-992, (1967).
    [35] C. L. Corey and B. Lisowsky, Trans. Met. Soc. AIME, 239, 239-243, (1967).
    [36] G. R. Leverant, M. Gell, and S. W. Hopkins, Proc. Second Int. Conf. Strength Met. Alloys, 3, 1141-1144, (1970).
    [37] J. Kramer, Z. Phys., 37, 639, (1934).
    [38] J. Kramer, Annln Phys., 37, 19, (1934).
    [39] A. Bremer, D. E. Couch and E. K. Williams, J. Res. Natn. Bur. Stand., 44, 109, (1950).
    [40] P. Duwes, Trans. Am. Soc. Metals, 60, 607, (1967).
    [41] H. W. Kui, A. L. Greer and D. Turnbull, Applied Physics Letters, 45, 6, 615-616,( 1984).
    [42] A. Inoue, K. Kita, T. Masumoto and K. Ohtera, Japanese Journal of Applied Physics Part 2-Letters, 27, 10, 1796-1799, (1998).
    [43] A. Inoue, K. Kita, T. Masumoto and T. Zhang, Materials Transactions, JIM, 30, 9, 722-725, (1989).
    [44] A. Inoue-A, T. Zhang and T. Masumoto, , Materials Transactions, JIM, 31, 3, 177-183, (1999).
    [45] A. Inoue and T. Masumoto, U.S. Patent No. 5032196, Japanese Patent 07-122120.
    [46] A. Peker and W. L. Johnson, Applied Physics Letters, 63, 17, 2342-2344, (1993).
    [47] A. Inoue, T. Zhang, K. Ohba and T. Shibata, Materials Transactions, JIM, 36, 7, 876-878, (1995).
    [48] A. Inoue and J. S. Gook, Materials Transactions, JIM, 36, 10, 1282-1285, (1995).
    [49] A. Inoue, N. Nishiyama and T. Matsuda, Materials Transactions, JIM, 37, 2, 181-184, (1996).
    [50] Y. He, T. D. Shen, and R. B. Schwarz, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 29, 7, 1795-1804, (1998).
    [51] T. Zhang and A. Inoue, Materials Transactions, JIM, 39, 10, 1001-1006, (1998).
    [52] A. Inoue and T. Zhang, Materials Transactions, JIM, 40, 301, (1999).
    [53] A. Inoue, T. Zhang and A. Takeuchi, Applied Physics Letters, 71, 4, 464-466, (1997).
    [54] A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Materials Transactions, JIM, 33, 10, 937-945, (1992).
    [55] A. Inoue, T. Nakamura, T. Sugita, T. Zhang and T. Masumoto, Materials Transactions, JIM, 34, 4, 351-358, (1993).
    [56] A. Inoue and T. Zhang, Materials Transactions, JIM,37, 2, 185-187, (1996).
    [57] A. Inoue, N. Nishiyama and H. Kimura, Materials Transactions, JIM, 38, 2, 179-183, (1997).
    [58] A. Inoue, Bulk Amorphous Alloys, 2, Trans. Tech. Publications, Zurich, 28, (1999).
    [59] A. Inoue and N. Nishiyama, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 226, JUN, 401-405, (1997).
    [60] H. S. Chen, H. J. Leamy and C. E. Miller, Annual Review of Materials Science, 10, 363-391, (1980).。
    [62] B. B. Prasad, T. R. Anantharaman, A. K. Bhatnagar, D. Ganesan and R. Jagannathan, Journal of Non-crystalline Solids, 61-2, Jan, 391-395, (1984).。
    [63] Carlisle and H. Ben, Machine Design, 58, 1, 24-30, (1986).。
    [64] H. Jones, Rapid Solidification of Metals and Alloys, Inst. of Metallurgists, London, 1982.
    [65] F. G. Yost, Journal of Materials Science, 16, 11, 3039-3044, (1981).
    [66] P. Haasen, "Metallic Glasses", Journal of Non-Crystalline Solids, 56, 1-3, 191-199, (1983).。
    [67] 童重縉,“Cu-Co-Ni-Cr-Al-Fe高熵合金變形結構與高溫特性之研究”, 國立清華大學材料科學工程研究所碩士論文, 2002.
    [68] Wesson J., 1997, Tokamaks, Clarendon Press Oxford.
    [69] P. H. Thornton, R. G. L. Johnston, Met. Trans., 1, 207-218, (1970).。
    [70] C. T. Sims, and W. C. Hagel, “The Superalloys”, John Wiley & Sons, New York, 1972.
    [71] J.F. Ziegler, J.P. Biersack, and U. Littmark, Stopping and Range of Ions in Solids, Vol. 1 (Pergamon Press, New York,1985)
    [72] 科儀叢書3, 材料電子顯微鏡學, 國科會精儀中心.
    [73] 汪建民, 杜正恭, 材料分析 中國材料科學學會 1998.
    [74] R. F. Egerton, “Electron-energy loss spectroscopy in the electron microscopy “, Plenum Press, New York, (1996)
    [75] H. Shuman, C. F. Chang and A. P. Somlyo, Ultramicorsc., 19,121 (1986).
    [76] F. Hofer and P. Warbichler, Ultramucrosc., 63:21 (1996)
    [77] N. Bonnet, C. Coliex, C. Mory and M. Tence, Scanning Microscopy 2(Suppl.) 351 (1988)
    [78] A. Berger, J. Mayer and H. Kohl, Ultramicrosc., 55:101 (1994)
    [79] P. A. Crozier and R. F. Egerton, Ultramicrosc., 27:9 (1988)
    [80] D. B. Williams and C. B. Carter, “Transmission Electron Microscopy”, Plenum Press. New York & London, (1996)
    [81] R MEYER, J PILLOT, B ANDRIES - POWDER MET, 1971, 561-581, 1971
    [82] William H. Cubberly, Metals Handbook,9th Edn.,Vol. 3,ASM International, Metals park, OH, 1980.
    [83] William H. Cubberly, Metals Handbook,9th Edn.,Vol. 3,ASM International, Metals park, OH, 1980.
    [84] K. Heck, Superalloys 718, 625, 706 and Various Derivatives, TMS, Warrendale, PA (1994) 393.
    [85] B. Clark and F. Pickering, JISI 205 (1967) 70.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE