簡易檢索 / 詳目顯示

研究生: 李明緯
Li, Ming-Wei
論文名稱: 利用位元功率分配演算法動態適應前傳超密集分波多工系統之通道響應
Dynamically adapting channel response by using bit and power loading algorithm for UDWDM mobile fronthaul system
指導教授: 馮開明
Feng, Kai-Ming
口試委員: 邱奕鵬
Chiou, Yih-Peng
彭朋群
Peng, Peng-Chun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 78
中文關鍵詞: 超密集分波多工位元功率分配演算法光纖通訊系統正交分頻多工偏振態多工
外文關鍵詞: UDWDM, mobile-fronthaul, OFDM, PDM, optical-communication
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球科技日新月異,行動通訊技術也快速的發展,時至今日,在2020年的此時此刻,第五代行動通訊也正式上線,承襲第四代行動通訊的正交分頻多工(Orthogonal Frequency-Division Multiplexing, OFDM)調變技術,並且著重於三大基礎概念,其中,就大規模機器型通訊(Massive Machine Type Communications, mMTC)的情況而言,其特徵在於連接大量元件設備,約每平方公里內有100萬個裝置的機械間通訊需求,屆時,就前傳分波多工(Ultra Dense Wavelength Division Multiplexing, UDWDM)的系統而言,每個裝置都必須分配到一個特定的波長當作光載波,各自成為一個通道,由於頻譜資源有限,每個波長間距將會變得相當密集,所以在實際情況下,在中央單元(Central Unit, CU)光載波漂移的現象以及在分布式單元(Distributed Unit, DU)濾波器無法乾淨濾出指定通道資訊是容易發生的,此會造成通道響應有不穩定的情形,影響訊號品質。本論文提出利用位元功率分配演算法來動態適應通道響應的改變,在實際的通道響應和有限的接收功率之下,將位元和功率做有效的分配,並且在一定的位元錯誤率門檻之下,盡量達到最高的吞吐量,在通道響應條件改變時,呈現出優化通道能力及舒緩通道變化對訊號破壞的作用。
    在實驗架構一中,將呈現前傳之超密集分波多工的架構,利用強度調變與直接接收(intensity modulation/direct detection, IMDD)的方式進行調變與接收正交分頻多工正交振幅調變(Orthogonal Frequency-Division Multiplexing-Quadrature Amplitude Modulation, OFDM-QAM)的訊號,解分波多工是利用光學濾波器進行濾波來達成,藉由改變接收功率、移動濾波器通道位置,來模仿通道響應變動的情況,最後再離線進行數位訊號處理,計算經過位元功率分配演算法之後可以乘載之資料量。在實驗架構二裡,再加入偏振態多工(Polarization-division multiplexing, PDM)結合UDWDM的技術,讓在有限的頻譜資源中提升可傳輸之資料量,不需要進行偏振態追蹤就可以用光學濾波器進行解多工,再來藉由改變光學濾波器來造成不同載波功率比的情況、改變雷射波長模仿載波偏移,並且在遠端無線電站(Remote Radio Head, RRH)端將訊號升頻至28GHz,進行毫米波無線傳輸。最後證實,位元功率分配演算法在UDWDM的系統當中,有機會成為將來動態適應通道的一種方式。


    With the rapid growth of technology nowadays, mobile communication technology is popular topic these days, specially in 2020. 5th Generation Mobile Networks is going wild. When it comes to massive Machine Type Communications (mMTC) scenario, large quantity of devices should be connected. 100 million connections of devices per square kilometer is required. In mobile fronthaul Ultra Dense Wavelength Division Multiplexing (UDWDM) system, every device needs specific wavelength as an optical carrier to become an individual channel. Due to limited spectrum resource, the channel spacing of optical carriers will narrow down when the number of device increases. Thus, in real situation, the deviation of laser wavelength at central unit (CU) and imperfection of optical filter at Distributed Unit (DU) are two major reasons to have impacts on channel response, which cause unstable data performance.
    In this work, bit and power loading algorithm is used to adapt channel response dynamically in mobile fronthaul UDWDM system. Under the circumstance of real channel response and limited received optical power, bit and power loading algorithm redistributes bits and power effectively so that higher capacity can be achieved under the assigned FEC threshold. When channel response changes, bit and power loading algorithm can have the ability to optimize the data performance and alleviate the signal damage.
    In setup one, the experiment of UDWDM is demonstrated. Intensity modulation and direct detection (IM/DD) is used to modulate and receive Orthogonal Frequency-Division Multiplexing-Quadrature Amplitude Modulation (OFDM-QAM) signal. Tunable optical filter is adopted to serve as de-multiplexer to select different channels. In order to mimic the varying channel response, different received optical power and different position of the filter are considered. After that, digital signal processing is carried out to calculate the maximum possible capacity by bit and power loading algorithm.
    In setup two, Polarization-division multiplexing (PDM) is introduced to combine with UDWDM system so that more data can be transmitted in limited spectrum resource. In this way, Polarization-tracking is not needed and tunable optical filter is adopted to serve as de-multiplexer as well. Different carrier power ratio and deviation of laser wavelength are considered. At last, signal is up-converted to 28 GHz at Remote Radio Head (RRH) and demonstrate the wireless transmission.

    目錄 中文摘要 i ABSTRACT iii 致謝 v 目錄 vi 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 1.3 論文架構 5 第二章 實驗元件原理 6 2.1 光電調變器 6 2.2 光學波長梳型濾波器 9 2.3 天線 10 2.4 光感測器 12 第三章 系統原理與概念 16 3.1正交分頻多工 16 3.2直接檢測光學多工系統機制 22 3.3偏振態多工 24 3.4 分波多工 29 3.5無線射頻與光纖通訊整合技術 31 第四章 實驗理論與想法 34 4.1 位元功率分配演算法 34 4.1.1 位元功率分配演算法介紹 34 4.1.2位元功率分配演算法算式 36 4.2 利用光學濾波器解多工原理 41 4.3 利用位元功率演算法適應通道響應 44 第五章 實驗架構與結果 46 5.1 前傳之超密集分波多工實驗 46 5.1.1實驗一架構 46 5.1.2 實驗一結果與分析 49 5.2 前傳之偏振超密集分波多工實驗 57 5.2.1 實驗二架構 57 5.2.2 實驗二結果與分析 61 第六章 結論 70 參考文獻 72 ABBREVIATION INDEX 77

    參考文獻
    [1] 蘇俊吉(2015)。科學發展513期。58~63頁。
    [2] J. A. del Peral-Rosado, R. Raulefs, J. A. López-Salcedo and G. Seco-Granados, "Survey of Cellular Mobile Radio Localization Methods: From 1G to 5G," IEEE Communications Surveys & Tutorials, vol. 20, no. 2, pp. 1124-1148, 2018.
    [3] M. Shafi et al., "5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice," IEEE Journal on Selected Areas in Communications, vol. 35, no. 6, pp. 1201-1221, June 2017.
    [4] L. Chen et al., "A Novel Scheme for Seamless Integration of ROF With Centralized Lightwave OFDM-WDM-PON System," Journal of Lightwave Technology, vol. 27, no. 14, pp. 2786-2791, July15, 2009.
    [5] D. Qian et al., "High Capacity/Spectral Efficiency 101.7-Tb/s WDM Transmission Using PDM-128QAM-OFDM Over 165-km SSMF Within C- and L-Bands," Journal of Lightwave Technology, vol. 30, no. 10, pp. 1540-1548, May15, 2012.
    [6] T. Dong, Y. Bao, Y. Ji, A. P. T. Lau, Z. Li and C. Lu, "Bidirectional Hybrid OFDM-WDM-PON System for 40-Gb/s Downlink and 10-Gb/s Uplink Transmission Using RSOA Remodulation," IEEE Photonics Technology Letters, vol. 24, no. 22, pp. 2024-2026, Nov.15, 2012.
    [7] H. Takahashi, A. Al Amin, S. L. Jansen, I. Morita and H. Tanaka, "Highly Spectrally Efficient DWDM Transmission at 7.0 b/s/Hz Using 8×65.1-Gb/s Coherent PDM-OFDM," Journal of Lightwave Technology, vol. 28, no. 4, pp. 406-414, Feb.15, 2010.
    [8] M. Cheng, C. Tsai, Y. Chi and G. Lin, "Direct QAM-OFDM Encoding of an L-band Master-to-Slave Injection-Locked WRC-FPLD Pair for 28 × 20 Gb/s DWDM-PON Transmission," Journal of Lightwave Technology, vol. 32, no. 17, pp. 2981-2988, Sept.1, 2014.
    [9] S. Sarmiento, J. A. Altabas, S. Spadaro and J. A. Lazaro, "Experimental Assessment of 10 Gbps 5G Multicarrier Waveforms for High-Layer Split U-DWDM-PON-Based Fronthaul," Journal of Lightwave Technology, vol. 37, no. 10, pp. 2344-2351, 15 May15, 2019.
    [10] X. Chen and J. Yao, "A High Spectral Efficiency Coherent RoF System Based on OSSB Modulation With Low-Cost Free-Running Laser Sources for UDWDM-PONs," Journal of Lightwave Technology, vol. 34, no. 11, pp. 2789-2795, June.1, 2016.
    [11] M. Zhu, L. Zhang, S. Fan, C. Su, G. Gu and G. Chang, "Efficient Delivery of Integrated Wired and Wireless Services in UDWDM-RoF-PON Coherent Access Network," IEEE Photonics Technology Letters, vol. 24, no. 13, pp. 1127-1129, July.1, 2012.
    [12] E. Bedeer, M. F. Marey, O. A. Dobre, M. H. Ahmed and K. E. Baddour, "A novel algorithm for joint bit and power loading for OFDM systems with unknown interference," 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, pp. 3579-3584, 2012.
    [13] R. G. Hunsperger, Intergrated Optics: Theory and Technology, Springer Publishing Company, 2009.
    [14] https://en.wikipedia.org/wiki/Optical_interleaver
    [15] D. K. Cheng, Fundamentals of Engineering Electromagnetics, Pearson, pp. 426-427, 1993.
    [16] S.O. Kasap, Optoelectronics and Photonics Principles and practices, Pearson, pp. 381-386, 2013.
    [17] 國立清華大學光電工程研究所全體教師。光電元件與量測。48~51頁。
    [18] http://physicsopenlab.org/2017/06/22/x-ray-spectroscopy-with-pin-photodiode/
    [19] https://www.teamwavelength.com/photodiode-basics/
    [20] R. Chang and R. Gibby, "A Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Scheme," IEEE Transactions on Communication Technology, vol. 16, no. 4, pp. 529-540, August 1968.
    [21] S. Weinstein and P. Ebert, "Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform," IEEE Transactions on Communication Technology, vol. 19, no. 5, pp. 628-634, October 1971.
    [22] James W. Cooley, John W. Tukey, "An algorithm for the machine calculation of complex Fourier series", Math. Comput. 19 (90), pp. 297–301, 1965.
    [23] J. Armstrong, "OFDM for Optical Communications," Journal of Lightwave Technology, vol. 27, no. 3, pp. 189-204, Feb.1, 2009.
    [24] Arthur James Lowery, "Amplified-spontaneous noise limit of optical OFDM lightwave systems," Opt. Express 16, pp. 860-865, 2008.
    [25] D. K. Cheng, Fundamentals of Engineering Electromagnetics, Pearson, pp. 283-286, 1993.
    [26] Maria Morant, Joaquin Perez, Roberto Llorente, “Polarization Division Multiplexing of OFDM Radio-over-Fiber Signals in Passive Optical Networks,” Advances in Optical Technologies, 2014.
    [27] X. Steve Yao, L.-S. Yan, B. Zhang, A. E. Willner, and Junfeng Jiang, "All-optic scheme for automatic polarization division demultiplexing," Opt. Express 15, pp. 7407-7414, 2007.
    [28] ITU-T Series G Supplement 42, pp. 24-25, 2018.
    [29] Christina Lim, Yizhuo Yang, Ampalavanapillai Nirmalathas, “Transport Schemes for Fiber-Wireless Technology: Transmission Performance and Energy Efficiency,” Photonics. 1, pp. 67-83, 2014.
    [30] https://blog.xuite.net/rfog/concept/77261539
    [31] G. Meslener, "Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection," IEEE Journal of Quantum Electronics, vol. 20, no. 10, pp. 1208-1216, October 1984.
    [32] H. Schmuck, "Comparison of optical millimetre-wave system concepts with regard to chromatic dispersion," Electronics Letters, vol. 31, no. 21, pp. 1848-1849, Oct. 1995.
    [33] I. Kalet, "The multitone channel," IEEE Transactions on Communications, vol. 37, no. 2, pp. 119-124, Feb. 1989.
    [34] A. M. Wyglinski, F. Labeau and P. Kabal, "Bit loading with BER-constraint for multicarrier systems," IEEE Transactions on Wireless Communications, vol. 4, no. 4, pp. 1383-1387, July 2005.
    [35] K. Liu, B. Tang and Y. Liu, "Adaptive power loading based on unequal-ber strategy for OFDM systems," IEEE Communications Letters, vol. 13, no. 7, pp. 474-476, July 2009.
    [36] L. Goldfeld, V. Lyandres and D. Wulich, "Minimum BER power loading for OFDM in fading channel," IEEE Transactions on Communications, vol. 50, no. 11, pp. 1729-1733, Nov. 2002.
    [37] D. Hughes-Hartogs, “Ensemble modem structure for imperfect transmission media,” Mar. 15 1988, US Patent 4,731,816.
    [38] J. Campello, "Optimal discrete bit loading for multicarrier modulation systems," Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252), Cambridge, MA, pp. 193, 1998.
    [39] H. E. Levin, "A complete and optimal data allocation method for practical discrete multitone systems," IEEE Global Telecommunications Conference (Cat. No.01CH37270), San Antonio, TX, vol.1, pp. 369-374, 2001.
    [40] Zhefeng Song, Keli Zhang and Yong Liang Guan, "Joint bit-loading and power-allocation for OFDM systems based on statistical frequency-domain fading model," Proceedings IEEE 56th Vehicular Technology Conference, Vancouver, BC, Canada, vol.2, pp. 724-728, 2002.

    QR CODE