研究生: |
鐘才明 Tsai-Ming Chung |
---|---|
論文名稱: |
半結晶性團聯共聚合物於奈米侷限之結晶行為:玻璃化效應與尺寸效應 Nanoconfined Crystallization in Semi-crystalline Block Copolymers: Effects of Vitrification and Size |
指導教授: |
何榮銘
Rong-Ming Ho |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 182 |
中文關鍵詞: | 結晶性團聯共聚合物 、硬相侷限 、軟相侷限 、侷限 、破壞 、異相成核 、均相成核 、結晶排列 |
外文關鍵詞: | semi-crystalline block copolymers, hard confinement, soft confinement, confined, breakout, heterogeneous nucleation, homogeneous nucleation, crystal orientation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功合成一系列聚苯乙烯與聚丙烯之半結晶性雙團聯共聚合物(polystyrene-b-syndiotactic polypropylene (PS-sPP)之層板微結構,因sPP之結晶溫度範圍跨越PS的玻璃轉化區,所可探討其結晶在硬相與軟相侷限系統之結晶形態與結晶行為。當Tc,sPP < Tg,PS(硬相侷限環境)時,此時結晶進行時受到周圍環境的影響限制而保持原有層板微結構。隨結晶溫度上升至PS鏈段的Tg,PS時,其結晶後變成模版形態(templated )。最後當Tc,sPP > Tg,PS時,其形態受到結晶而破壞。另外,透過剪切力誘導裝置排整層板微結構,藉由同步輻射實驗中2D SAXS/WAXD研究層板微結構與結晶排列方向之相互關係。在硬相侷限環境中,PS/sPP 71/212發現一特殊三層的sPP結晶層板結構,藉由TEM、SAXS、WAXD與SAED實驗分析為垂直方向排列並且建構出三層sPP結晶層板在侷限環境中分子鏈之折疊方式與排列方向。□
為了研究在侷限環境中整個結晶溫度範圍,因此合成一系列聚4-乙烯啶與聚己內酯之半結晶性雙團聯共聚合物poly(4-vinylpyridine)-b-poly(epsilon-caprolactone) (P4VP-PCL)之層板與圓柱微結構。此系統為硬相侷限系統與強相分離偏析強度系統,並且藉由控制分子量調控侷限尺寸大小。在1D侷限環境其結晶機制變化情形,從異相成核轉變成為均相成核此時侷限尺寸小於8nm,並觀察其結晶形態為一個個微小的顆粒,然而其結晶方向為無序排列。在2D侷限環境其結晶機制也有相同變化情形,從異相成核轉變成為均相成核此時侷限尺寸等於10nm,並觀察其結晶形態為一個個微小的顆粒,然而其結晶方向都為垂直排列但從原先喜愛的結晶成長方向沿者b軸變成[110]軸。
A series of semi-crystalline block copolymers, polystyrene-b-syndiotactic polypropylene (PS-sPP), with lamellar nanostructures have been synthesized. The crystallization of the sPP blocks in PS-sPP was carried out under hard confinement (i.e., the crystallization temperature of sPP (Tc,sPP) < the glass transition temperature of PS (Tg,PS)) and soft confinement (i.e., Tc,sPP > Tg,PS), where interesting morphological evolution was studied by transmission electron microscopy (TEM) and time-resolved small angle X-ray scattering (SAXS). A confined morphology for crystallized PS/sPP 71/212 (high-molecular-weight PS-sPP) can be observed when Tc,sPP > Tg,PS. However, the microphase-separated lamellar nanostructure becomes a templated morphology by crystallization once Tc,sPP approaches Tg,PS. Consequently, the breakout of nanostructure occurs when Tc,sPP > Tg,PS. This study reveals the Tg effect on the final morphologies of block copolymers after crystallization. At Tc,sPP < Tg,PS (hard confinement) or Tc,sPP ~ Tg,PS (soft confinement), no appreciable displacement in the first-order peak (i.e., long period of microphase-separated lamellae) during crystallization can be found. By contrast, the intensity of the first-order peak decreases while Tc,sPP > Tg,PS, and then is gradually replaced by crystalline lamellar diffraction as the progress of crystallization. Interestingly, a peculiar crystalline texture under confinement, a trilayer sPP crystalline morphology in-between vitrified PS confinement in the PS/sPP 71/212, was observed by TEM. The morphological evolution of the double-length-scale multilayered morphology was examined by time-resolved SAXS. The sPP crystals under confinement form perpendicular morphology having crystalline chains normal to the microphase-separated lamellae, as evidenced by two-dimensional SAXS and wide-angle X-ray diffraction (WAXD). On the basis of simple geometric argument and the crystallinity value, the sPP molecular chains in crystalline phase roughly appear as three-chain-traverse crystalline lamellae near the edge of sPP microdomain and one and a half chain-traverse crystalline lamellae in the middle of sPP microdomain for one single sPP chain. For comparison, the crystallization kinetics of sPP under soft and hard confinement (namely block copolymers) and of sPP homopolymers were studied by Avrami treatment for the change of crystallinity with time. Similar to the sPP homopolymers, the crystallization of sPP chains under confinement exhibits a heterogeneous nucleation process. To further examine the effect of spatially confined size on crystallization behavior, a low-molecular-weight PS-sPP (PS/sPP 58/174) was synthesized. Even with the decrease of segregation strength in the PS-sPP, breakout morphology similar to PS/sPP 71/212 was observed once Tc,sPP > Tg,PS in the crystalline morphology of PS/sPP 58/174; suggesting that Tg effect is dominant to determine the final crystalline morphology. Nevertheless, the crystalline lamellae of PS/sPP 58/174 under hard confinement appear as randomly oriented entities within the confined microdomains; indicating that the formation of multilayer sPP crystalline morphology is strongly dependent upon the confined dimension. Further decreasing the confined size, no significant crystallinity can be identified in the whole crystallization window; suggesting that the crystallizability is heavily depressed by the change of confined size.
To truly examine the confined crystallization in the whole temperature range, a series of semi-crystalline block copolymers, poly(4-vinylpyridine)-b-poly(epsilon-caprolactone) (P4VP-PCL), with lamellar and cylindrical nanostructures have also been synthesized. Owing to the vitrified P4VP microdomains and strongly segregated microphase separation, the crystallization of the PCL blocks in P4VP-PCL was carried out within the nanoscale confinement (i.e., under strongly segregated and hard confinement). Simply by varying the molecular weight of the block copolymer, namely the confined size, polymeric crystallization can be tailored under confinement. A distinct nucleation mechanism in the case of lamellar nanostructure (namely, one-dimensional (1D) confinement), altering from heterogeneous to homogeneous nucleation can be obtained once the confined size becomes smaller than a critical dimension, equivalent to the regular thickness of heterogeneously nucleated crystalline lamellae (ca. 8 nm). Consequently, discrete crystalline granules can be generated through homogeneous nucleation, namely a single nucleus within one granule. Also, crystal growth is altered from specific to random orientation with respect to the interface between the crystalline and amorphous domains in the copolymers, as evidenced by simultaneous SAXS and WAXD experiments. Similar to the crystallization kinetics under 1D confinement, nucleation from heterogeneous to homogeneous can be identified once the confined size becomes smaller than 10 nm under cylinder nanostructure (i.e., two-dimensional (2D) confinement). Also, under 2D confinement, the crystalline chains of PCL appear as perpendicular orientation under confinement while the confine size > 10 nm. A preferred growth direction is along b-axis parallel to central axes of the cylinders. Nevertheless, while the confine size ~ 10 nm, the texture of crystalline granules (namely, typical morphology for homogeneously nucleated lamellae) can be found. Interestingly, the preferred growth direction is along [110]-axis parallel to central axes of the cylinders. As a result, the crystallization behavior including crystalline orientation and crystallization kinetics are indeed significantly affected by the change of confined size. This system thus serves as a model to analyze the impact of confined size in 1D and 2D spatial confinement on the crystallization of polymeric materials.
(1) Prockop, D. J.; Fertala, A. J. Struct. Biol. 1998, 122, 111.
(2) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
(3) Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
(4) Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
(5) Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
(6) Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
(7) (a) Bate, F. S.; Fredrickson, G. H.; Annu. Rev. Phys. Chem. 1990, 41, 525.; (b)Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
(8) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
(9) Gast, A. P.; Hall, C. K.; Russel, W. B. J Colloid Interface Sci 1983, 96, 251.
(10) De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B. Nature 2000, 405, 433.
(11) Park, C.; De Rosa, C.; Thomas, E. L. Macromolecules 2001, 34, 2602.
(12) Reiter, G.; Gastelein, G.; Hoerner, P.; Riess, G.; Blumen, A.; Sommer, J.-U. Phys. Rev. Lett. 1999, 83, 3844.
(13) Ho, R.-M.; Hsieh, P.-Y.; Tseng, W.-H.; Lin, C. C.; Huang, B. H. Macromolecules, 2003, 36, 9085.
(14) Lotz, B.; Kovacs, A. J. ACS Polym. Prepr. 1969, 10, 820.
(15) Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237.
(16) Ryan, A. J.; Hamley, I. W.; Bras, W.; Bates, F. S. Macromolecules 1995, 28, 3860.
(17) Yang, Y. -W.; Tanodekaew, S.; Mai, S. -M.; Booth, C.; Ryan, A. J.; Bras, W.; Viras, K. Macromolecules 1995, 28, 6029.
(18) Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B. H.; Chun, M.; Quirk, R. P.; Cheng, S. Z. D.; Hsiao, B. S.; Yeh, F.; Hashimoto, T. Phy. Rev. B. 1999, 60, 10022.
(19) Cohen, R. E.; Cheng, P. L.; Douzinas, K.; Kofinas, P.; Berney, C. V. Macromolecules 1990, 23, 324.
(20) Douzinas, K. C.; Cohen, R. E. Macromolecules 1992, 25, 5030.
(21) Cohen, R. E.; Bellare, A.; Drzewinski, M. A. Macromolecules 1994, 27, 2321.
(22) Khandpur, A. K.; Macosko, C. W.; Bates, F. S. J. Polym. Sci., Part B: Polym. Phys. 1995, 33, 247.
(23) Liu, L. -Z.; Yeh, F.; Chu, B. Macromolecules 1996, 29, 5336.
(24) Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Macromolecules 1996, 29, 8835.
(25) Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Bates, F. S.; Towns-Andrews, E. Polymer 1996, 37, 4425.
(26) Quiram, D. J.; Register, R. A.; Marchand, G. R.; Adamson, D. H. Macromolecules 1998, 31, 4891.
(27) Hamley, I. W.; Fairclough, J. P. A.; Bates, F. S.; Ryan, A. J. Polymer 1998, 39, 1429.
(28) Weimann, P. A.; Hajduk, D. A.; Chu, C.; Chaffin, K. A.; Brodil, J. C.; Bates, F. S. J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 2053.
(29) Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, G.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 5957.
(30) Loo, Y. L.; Register, R. A.; Ryan, A. J. Phys. Rev. Lett. 2000, 84, 4120.
(31) Zhu, L.; Cheng, S. Z-D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S,; Yeh, F.; Lotz, B. Polymer 2001, 42, 5829.
(32) Zhu, L.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Cheng, S. Z-D.; Thomas, E. L.; Hsiao, B. S,; Yeh, F.; Liu, L.; Lotz, B. Macromolecules 2001, 34, 1244.
(33) Sun, L.; Zhu, L.; Ge, Q.; Quirk, R. P.; Xue, C.C.; Cheng, S. Z. D.; Hsiao, B. S.; Avila-Orta C. A.; Sics, I.; Cantino, M. E. Polymer 2004, 45, 2931.
(34) Huang, P.; Zhu, L.; Guo, Y.; Ge, Q.; Jing, A. J.; Chen, W. Y.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Avila-Orta, C. A.; Sics, I.; Macromolecules 2004, 37, 3689.
(35) Ishikawa, S.; Ishizu, K.; Fukutomi, T. Eur. Polym. J. 1992, 28, 1219.
(36) Kofinas, P.; Cohen, R. E. Macromolecules 1994, 27, 3002.
(37) Quiram, D. J.; Register, R. A.; Marchand, G. R. Macromolecules 1997, 30, 4551.
(38) Mai, S. -M.; Fairclough, J. P. A.; Viras, K.; Gorry, P. A.; Hamley, I. W.; Ryan, A. J.; Booth, C. Macromolecules 1997, 30, 8392.
(39) Hillymer, M. A.; Bates, F. S. Macromol. Symp. 1997, 117, 121.
(40) Chen, H. L.; Hsiao, S. C.; Lin, T. L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671.
(41) Chen, H.-L.; Wu, J. C.; Lin, T.-L.; Lin, J. S. Macromolecules 2001, 34, 6936.
(42) Loo, Y. -L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules 2001, 34, 8968.
(43) Xu, J.-T.; Turner, S. C.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chaibundit, C.; Booth, C. Macromolecules 2002, 35, 3614.
(44) Xu, J.-T.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chaibundit, C. Macromolecules 2002, 35, 6937.
(45) Loo, Y. -L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
(46) Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
(47) Ho, R.-M.; Lin, F.-H.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Hsiao, B. S.; Sics, I. Macromolecules 2004, 37, 5985.
(48) Quiram, D. J.; Register, R. A.; Marchand, G. R.; Ryan, A. J Macromolecules 1997, 30, 8338.
(49) Huang P.; Zhu, L.; Calhoun, B.H.; Ge, Q.; Quirk, R.P.; Cheng, S.Z.D.; Thomas, E.L.; Hsiao, B.S.; Yen, F.; Liu, L.; Lotz, B. Macromolecules 2001, 34, 6649.
(50) Ryan, A. J.; Fairclough, J. P. A.; Hamley, I. W.; Mai, S.-M.; Booth, C. Macromolecules 1997, 30, 1723.
(51) Park, C.; De Rosa, C.; Fetters, L. J.; Thomas, E. L. Macromolecules 2000, 33, 7931.
(52) Zhu, L.; Cheng, S. Z. D.; Huang, P.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L. Adv. Mater. 2002, 14, 31.
(53) Zhu, L.; Huang, P.; Chen, W. Y.; Ge, Q.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L. Macromolecules 2002, 35, 3553.
(54) Halperin, A.; Tirrell, M.; Lodge, T. P. Adv. Polym. Sci. 1992 100, 31.
(55) Milner, S. T. Science 1991, 251, 905.
(56) Zhao, B.; Brittan, W. J. Prog. Polym. Sci. 2000, 25, 677.
(57) Taunton, H. J.; Toprakcioglu, C.; Fetters, L. J.; Klein, J. Nature (London) 1988, 332, 712.
(58) Kent, M. S. Macromol. Rapid Commun. 2000, 21, 243.
(59) Chen, W. Y.; Zheng, J. X.; Cheng, S. Z. D.; Li, C. Y.; Huang, P.; Zhu, L.; Xiong, H.; Ge, Q.; Guo, Y.; Quirk, R. P.; Lotz, B.; Deng, L.; Wu, C.; Thomas, E. L. Phys. Rev. Lett., 2004, 93, 28301.
(60)Chen, W. Y.; Li, C. Y.; Zheng, J. X.; Huang, P.; Zhu, L.; Ge, Q.;
Quirk, R. P.; Lotz, B.; Deng, L.; Wu, C.; Thomas, E. L.; Cheng, S. Z.
D. Macromolecules 2004, 37, 5292.
(61)Zheng, J. X.; Xiong, H.; Chen, W. Y.; Lee, K.; Van Horn, R. M.; Quirk, R. P.; Lotz, B.; Thomas, E. L.; Shi, A.-C.; Cheng, S. Z. D. Macromolecules 2006, 39, 641.
(62)Natta, G.; Corradini, P.; Ganis, P. Makromol. Chem. 1960, 39, 238.
(63) Corradini, P.; Natta, G.; Ganis, P.; Temussi, P. A. J. Polym. Sci., Part C 1967, 16, 2477.
(64) Natta, G.; Peraldo, M.; Allegra, G. Makromol. Chem. 1964, 75, 215.
(65) Lotz, B.; Lovinger, A. J.; Cais, R. E. Macromolecules 1988, 21, 2375.
(66) Lovinger, A. J.; Lotz, B.; Davis, D. D. Polymer 1990, 31, 2253.
(67) Lovinger, A. J.; Davis, D. D.; Lotz, B. Macromolecules 1991, 24, 552.
(68) Lovinger, A. J.; Lotz, B.; Davis, D. D.; Padden, F. J. Macromolecules 1993, 26, 3494.
(69) Chatani, Y.; Maruyama, H.; Noguchi, K.; Asanuma, T.; Shiomura, T. J. Polym. Sci., Part C 1990, 28, 393.
(70) Chatani, Y.; Maruyama, H.; Asanuma, T.; Shiomura, T. J. Polym. Sci., Polym. Phys. 1991, 29, 1649.
(71) De Rosa, C.; Corradini, P. Macromolecules 1993, 26, 5711.
(72)De Rosa, C.; Auriemma, F.; Vinti, V. Macromolecules 1997, 30, 4137.
(73) De Rosa, C.; Auriemma, F.; Vinti, V. Macromolecules 1998, 31, 7430.
(74) Auriemma, F.; Ruiz de Ballesteros, O.; De Rosa, C. Macromolecules 2001, 34, 4485.
(75) Rastogi, S.; La Camera, D.; van der Burgt, F.; Terry, A. E.; Cheng, S. Z. D. Macromolecules 2001, 34, 7730.
(76) De Rosa, C.; Gargiulo, M. C.; Auriemma, F.; de Ballesteros, O. R.; Razavi, A. Macromolecules 2002, 35, 9083.
(77)De Rosa, C.; Auriemma, F.; Vinti, V. Macromolecules 1998, 31, 9253.
(78)Nakaoki, T.; Ohira, Y.; Hayashi, H.; Horii, F. Macromolecules 1998, 31, 2705.
(79) Vittoria, V.; Guadagno, L.; Comotti, A.; Simonutti, R.; Auriemma, F.; De Rosa, C. Macromolecules 2000, 33, 6200.
(80) Nakaoki, T.; Yamanaka, T.; Ohira, Y.; Horii, F. Macromolecules 2000, 33, 2718.
(81) Nakaoki, T.; Yamanaka, T.; Horii, F. Polymer 2001, 42, 4555.
(82)Tsai, J. C.; Kuo, J. C.; Ho, R. M.; Chung, T. M. Macromolecules 2006, 39, 7520.
(83) Ko, B. T.; Lin, C. C. Macromolecules 1999, 32, 8296.
(84) Xia, J.; Zhang, X.; Matyjaszewski, K. Macromolecules 1999, 32, 3531.
(85) Sun, Y.-S.; Chung, T.-M.; Li, Y.-J.; Ho, R.-M.; Ko, B.-T.; Jeng, U.-S.; Lotz, B. Macromolecules 2006, 39, 5782.
(86) Khan, S. A.; Larson, R. G. Rheol. Acta 1991, 30, 1.
(87) Lee, H. H.; Register, R. A.; Hajduk, D. A.; Gruner, S. M. Polym. Eng. Sci. 1996, 36, 1414.
(88) Rodriguez-Arnold, J.; Zhang, A.; Cheng, S. Z. D.; Lovinger, A. J.; Hsieh, E. T.; Chu, P.; Johnson, T. W.; Honnell, K. G.; Geerts, R. G.; Palackal, S. J.; Hawley, G. R.; Welch, B. Polymer 1994, 35, 1884.
(89)Floudas, G.; Papadopoulos, P.; Klok, H.-A.; Vandermeulen, G. W. M.; Rodriguez-Hernandez, J. Macromolecules 2003, 36, 3673.
(90) Schmidtke, J.; Strobl, G.; Thurn-Albrecht, T. Macromolecules 1997,
30, 5804.
(91) Zirkel, A.; Urban, V.; Richter, D.; Fetters, L. J.; Huang, J. S.; Kampmann, R.; Hadjichristidis N. Macromolecules 1992, 25, 6148.
(92) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
(93) Semenov, A. N. SoV. Phys. JETP 1985, 61, 733.
(94) Brandrup, J.; Immergut, E. H. Polymer Handbook; Wiley: New York
1989.
(95) Hamley, I. W. In The Physics of Block Copolymers; Oxford University Press: New York, 1998, Chapter 5 and references therein.
(96) Loo, Y.-L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules
2001, 34, 8968.
(97) Mu¨ller, A. J.; Albuerne, J.; Marquez, L.; Raquez, J. M.; Dege´e, P.;
Dubois, P.; Hobbs, J.; Hamley, I. W. Faraday Discuss. 2005, 128, 231.
(98) Mu¨ller, A. J.; Albuerne, J.; Esteves, L. M.; Marquez, L.; Raquez, J.
M.; Dege´e, P.; Dubois, P.; Collins, S.; Hamley, I. W. Macromol. Symp. 2004, 215, 369.
(99) Mu¨ller, A. J.; Balsamo, V. M.; Arnal, L.; Jakob, T.; Schmalz, H.;
Abetz, V. Macromolecules 2002, 35, 3048.
(100) Reiter, G.; Castelein, G.; Sommer, J. U.; Ro¨ttele, A.; Thurn-Albrecht,T. Phys. ReV. Lett. 2001, 87, 226101.
(101) Hu, H.; Dorset, D. L. Macromolecules 1990, 23, 4604.
(102) Bittiger, H.; Marchessault, R. H. Acta Crystallogr. 1970, B26, 1923.
(103) Douzinas, K. C.; Cohen, R. E.; Halasa, A. F. Macromolecules 1991,
24, 4457.
(104) Massa, M. V.; Carvalho, J. L.; Dalnoki-Veress, K. Eur. Phys. J. E
2003, 12, 111.
(105) Massa, M. V.; Dalnoki-Veress, K. Phys. ReV. Lett. 2004, 92, 255509.