簡易檢索 / 詳目顯示

研究生: 李雋毅
論文名稱: 以牛血清蛋白作為閘極介電材料之有機場效電晶體研究
A Study of Organic Field-Effect Transistors with Bovine Serum Albumin as Gate Dielectric
指導教授: 黃振昌
口試委員: 黃振昌
呂平江
鄭裕庭
吳耀銓
黃華宗
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 144
中文關鍵詞: 有機場效電晶體蛋白質牛血清蛋白五苯環
外文關鍵詞: OFET, protein, bovine serum albumin, pentacene
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,作者以牛血清蛋白(bovine serum albumin)做為軟性固態電解質介電材料以提升五苯環電晶體元件效能,元件在真空環境下閥值電壓約為-16.4 V、載子遷移率約為0.3 cm2V-1s-1,然而,在RH47%大氣環境下,元件的閥值電壓約為-0.7 V、載子遷移率約為4.7 cm2V-1s-1,在大氣環境中元件效能提升的原因可由電雙層模型解釋之。牛血清蛋白的酸性與鹼性胺基酸殘基可與水分子反應產生H3O+與OH-可移動離子,當可移動離子響應外界電場而移動至半導體-介電層介面形成電雙層時,可導致電晶體操作電壓降低,並且提升電晶體通道載子累積能力,使介面載子陷阱被填補進而使載子遷移率上升。

    此外,作者透過能夠包裹水氣於封裝模組內的新穎封裝製程,控制濕度以調控電晶體效能並且減少不利於電路設計的電遲滯效應,得到最佳化的濕度參數約為RH45%,其元件載子遷移率為2.85 cm2V-1s-1,閥值電壓為-0.41 V,電遲滯約0.24 V。在RH45%的元件可靠度測試中,元件可操作50次不會有明顯衰退,其開電流維持在約4×10-6 A,載子遷移率維持在2.85 cm2V-1s-1,此外,透過封裝製程的控制,元件的使用壽命在RH45%的濕度環境下亦可以維持100天以上效能不衰退。


    Bovine serum albumin (BSA) is a natural protein with good hydration ability which contains acidic and basic amino acid residues of ca. 34% in total. In vacuum, pentacene organic field-effect transistors (OFETs) with BSA as gate dielectric exhibit a field-effect mobility value (µFE,sat) of 0.3 cm2 V-1 s-1 in the saturation regime and a threshold voltage (Vth) of approximately -16 V. BSA is easy to be hydrated in air ambient. Electrical properties of BSA in vacuum and hydrated BSA in air ambient are characterized. Similar to polyelectrolyte, hydrated BSA may interact with water to form H3O+ and OH- mobile ions. The hydrated BSA may act the gate dielectric with the formation of electric double-layer capacitors (EDLCs) to improve the device performance. In a relative humidity of 47%, the mobility value increases to 4.7 cm2 V-1 s-1 and the Vth reduces to -0.7 V. Generation of mobile ions in hydrated BSA and the formation of EDLCs are discussed.
    A higher back sweep current hysteresis was observed for pentacene OFETs with BSA as gate dielectric in air ambient. A phenomenon of “humidity induced hysteresis reduction” occurs based on the transfer data at different humidity. The phenomenon is attributed to improvement of ion movement based on quasi-static capacitance data measured in a humidity range from 0 to 60 %. A simple model regarding the movement of H3O+ and OH- mobile ions in response to the applied gate voltage is proposed to explain the transfer data of the OFETs.
    A novel package process has been developed tp keep pentacene OFETs with BSA as gate dielectric in a certain humidity environment in order to investigate the device performance at optimized humidity. The devices at humidity of 45% have the best performance with field effect mobility value of 2.85cm2V-1s-1, threshold voltage of -0.41V, and hysteresis shift of 0.24V. In contrast to OFETs packaged at humidity of 60%, the OFETs packaged at humidity of 45% get a longer life time as long as 100 days. The optimized humidity parameter is considered to be at 45% for pentacene OFETs with BSA as gate dielectric.

    第一章、序論 1-1 有機場效電晶體之發展背景 1-2 有機場效電晶體的改善空間 1-3 研究動機 1-4 論文架構 參考文獻 第二章、文獻回顧 2-1 有機場效電晶體 2-1-1 有機場效電晶體之元件結構 2-1-2 有機半導體 2-1-3 閘極介電層 2-1-4 源極/汲極與有機半導體間的介面接觸 2-2 有機半導體載子傳輸 2-2-1 Band-like傳輸模型 2-2-2 Hopping傳輸模型 2-2-3 Multiple trapping and release(MTR)傳輸模型 2-3 有機場效電晶體的運作與參數擷取方式 2-3-1 元件運作 2-3-2 參數截取方式 2-4 牛血清蛋白 2-4-1 牛血清蛋白簡介 2-4-2 蛋白質結構 2-4-3 蛋白質變性 參考文獻 第三章、牛血清蛋白之介電性質分析與有機場效電晶體之效能分析 3-1 電解質介電層簡介 3-2 實驗 3-2-1 實驗流程 3-2-2 牛血清蛋白水溶液製備 3-2-3 牛血清蛋白介電層薄膜與五苯環有機場效電晶體製備 3-2-4 電性量測系統 3-2-5 圓二色光譜儀 3-2-6 霍氏轉換紅外光譜儀 3-2-7 原子力顯微鏡 3-3 結果與討論 3-3-1 牛血清蛋白之材料結構分析 3-3-2 牛血清蛋白薄膜之介電性質分析 3-3-3 牛血清蛋白介電層製作的五苯環電晶體特性分析 3-3-4 機制探討 參考文獻 第四章、牛血清蛋白之五苯環有機場效電晶體於濕度環境下的遲滯性質探討 4-1 電遲滯簡介 4-2 實驗 4-2-1 簡易手套箱封裝製程 4-2-2 電性量測系統 4-3 結果與討論 參考文獻 第五章、以封裝製程提升元件穩定度與生命週期 5-1 簡介 5-2 實驗流程 5-3 結果與討論 參考文獻 第六章、結論 附錄、並四苯搭配牛血清蛋白之有機場效電晶體

    [ 1 ] G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemarkers, J. B. P. H. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B.-H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. van Rens, D. M. de Leeuw, Nat. Mater. 3 (2004) 106.
    [ 2 ] T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, Nat. Mater. 9 (2010) 1015.
    [ 3 ] C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 14 (2002) 99.
    [ 4 ] S. R. Forrest, Nature 428 (2004) 911.
    [ 5 ] V. Subramanian, P. C. Chang, J. B. Lee, S. E. Molesa, S. K. Volkman, IEEE Trans. Compon. Packag. Technol. 28 (2005) 742.
    [ 6 ] H. Klauk, Chem. Rev. 39 (2010) 2643.
    [ 7 ] T. Kamiya, K. Nomura, H. Hosono, Sci. Technol. Adv. Mater. 11 (2010).
    [ 8 ] W. A. MacDonald, Advanced Flexible Polymeric Substrates in Organic Electronics, (Wiley-VCH, 2006).
    [ 9 ] S. Haas, Y. Takahashi, K. Takimiya, T. aseawa, Appl. Phys. Lett. 95 (2009) 022111.
    [ 10 ] R. S. S.-Carrera, S. Atahan, J. Schrier, A. A.-Guzik, J. Phys. Chem. C 114 (2010) 2334.
    [ 11 ] C.-H. Wang, C.-Y. Hsieh, J.-C. Hwang, Adv. Mater. 23 (2010) 1630.
    [ 12 ] J. Jo, J. S. Yu, T. M. Lee, D. S. Kim, K. Y. Kim, J. Nanosci. Nanotechnol 10 (2010) 3595.
    [ 13 ] D. Gamota, P. Kalyanasundaram, J. Zhang, Printed Organic and molecular electronics (Kluwer Academic Pub.) (2004).
    [ 14 ] C. A. Di, Y. Liu, G. Yu, D. Zhu, Acc. Chem. Res. 42 (2009) 1573.
    [ 15 ] Y. Shirota, H. Kageyama, Chem. Rev. 107 (2007) 953.
    [ 16 ] H. Klauk, Chem. Rev. 39 (2010) 2643.
    [ 17 ] D. J. Carswell, Nature 173 (1954) 736.
    [ 18 ] H. Klauk, D. J. Gundlach, J. A. Nichols, T. N. Jackson, IEEE Trans. Electron Dev. 46 (1999) 1258.
    [ 19 ] Z. Rang, A. Haraldsson, D. M. Kim, P. P. Ruden, M. I. Nathan, R. J. Chesterfield, C. D. Frisbie , Appl. Phys. Lett. 79 (2001) 2731.
    [ 20 ] G. Horowitz, D. Fichou, X. Peng, F. Garnier,Synth. Met. 41 (1991) 1127.
    [ 21 ] O. D. Jurchescu, M. Popinciuc, B. J. van Wees, T. T. M. Palstra, Adv. Mater. 19 (2007) 688.
    [ 22 ] S. Lee, B. Koo, E. Lee, H. Park, H. Kim, Appl. Phys. Lett. 88 (2006) 162109.
    [ 23 ] S. Haas, Y. Takahashi, K. Takimiya, T. aseawa, Appl. Phys. Lett. 95 (2009) 022111.
    [ 24 ] R. S. S.-Carrera, S. Atahan, J. Schrier, A. A.-Guzik, J. Phys. Chem. C 114 (2010) 2334.
    [ 25 ] M. M. Payne, S. R. Parkin, J. E. Anthony, C. Kuo, T. N. Jackson, J. Am. Chem. Soc. 127 (2005) 4969.
    [ 26 ] T. Mori, Condens. Matter. 20 (2008) 184010.
    [ 27 ] A. Assadi, C. Svensson, M. Willander, O. Inganas, Appl. Phys. Lett. 53 (1988) 195.
    [ 28 ] A. Babel, S. A. Jenekhe, Synth. Met. 148 (2005) 169.
    [ 29 ] A. Zen, M. Saphiannikova, D. Neher, U. Asawapirom, U. Scherf, Chem. Mater. 17 (2005) 781.
    [ 30 ] A. C. Arias, J. D. MacKenZie, I. McCulloch, J. Rivnay, A. Salleo, Chem. Rev. 110 (2010) 3.
    [ 31 ] J. Jang, J. W. Kim, N. Park, J.-J. Kim, Org. Electro. 9 (2008) 481.
    [ 32 ] J. N. Haddock, X. Zhang, B. Domercq, B. Kippelen, Org. Electro. 6 (2005) 182.
    [ 33 ] N. J. Haddock, B. Domercq, B. Kippelen, Electro. Lett. 41 (2005) 7.
    [ 34 ] K. Itaka, M. Yamashiro, J. Yamaguchi, M. Haemori, S. Yaginuma, Y. Matsumoto, M. Kondo, H. Koinuma, Adv. Mater. 18 (2006) 1713.
    [ 35 ] S. H. Han, K. J. Lee, S. H. Lee, J. Jang, J. Non-crystalline Solids 354 (2008) 2870.
    [ 36 ] R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. da S. Filho, J.-L. Bredas, L. L. Miller, K. R. Mann, C. D. Frisbie, J. Phys. Chem. B 108 (2004) 19281.
    [ 37 ] H. Wada, K. Shibata, Y. Bando, T. Mori, J. Mater. Chem. 18 (2008) 4165.
    [ 38 ] T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, T. D. Jones, Mat. Res. Soc. Symp. Proc. 771 (2003) 169.
    [ 39 ] E. M. Muller, J. A. Marohn, Adv. Mater. 17 (2005) 1410.
    [ 40 ] G. Horowitz, M. E. Hajlaoui, Adv. Mater. 12 (2000) 1046.
    [ 41 ] S. Steudel, S. D. Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, P. Heremans, Appl. Phys. Lett. 85 (2004) 4400.
    [ 42 ] S. E. Fritz, T. W. Kelley, C. D. Frisbie, J. Phys. Chem. B 109 (2005) 10574.
    [ 43 ] M. H. Yoon, H. Yan, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 127 (2005) 10388.
    [ 44 ] L. L. Chua, P. K. H. Ho, H. Sirringhaus, R. H. Friend, Appl. Phys. Lett. 84 (2004) 3400.
    [ 45 ] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, W. Weber, J. Appl. Phys. 92 (2002) 5259
    [ 46 ] N. C. Greenham, C. D. Dimitrakopoulos, C. D. Frisbie, Mater. Res. Soc. Symp. Proc. 771 (2003) 169.
    [ 47 ] Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, K. Cho, Appl. Phys. Lett. 88 (2006) 072101.
    [ 48 ] O. D. Jurchescu, P. Mihaita, J. van W. Bart, T. M. Palstra, Adv. Mater. 19 (2007) 688.
    [ 49 ] H. S. Tan, N. Mathews, T. Cahyadi, F. R. Zhu, S. G. Mhaisalkar, Appl. Phys. Lett. 94 (2009) 263303.
    [ 50 ] X. N. Sun, L. Zhang, C. A. Di, Y. G. Wen, Y. L. Guo, Y. Zhao, G. Yu, Y. Q. Liu, Adv. Mater. 23 (2011) 3128.
    [ 51 ] W. Y. Chou, C. W. Kuo, C. W. Chang, B. L. Yehand, M. H. Chang, J. Mater. Chem. 20 (2010) 5474.
    [ 52 ] C.-H. Wang, C.-Y. Hsieh, J.-C. Hwang, Adv. Mater. 23 (2010) 1630.
    [ 53 ] L.-K. Mao, J.-C. Hwang, T.-H. Chang, C.-Y. Hsieh, L.-S. Tsai, Y.-L. Chueh, S. S. H. Hsu, P.-C. Lyu, T.-J. Liu, Org. Electro. 14 (2013) 1170.
    [ 54 ] S. O. Kasap, Principles of Electronic Materials and Devices (McGraw-Hill Pub.) (2006).
    [ 55 ] H. B. Michaelson, J. Appl. Phys. 48 (1977) 4729.
    [ 56 ] I. Kaur, W. Jia, R. P. Kopreski, S. Selvarasah, M. R. Dokmeci, C. Pramanik, N. E. McGruer, G. P. Miller, J. Am. Chem. Soc. 130 (2008) 16274.
    [ 57 ] A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, H. von Seggern, Phys. Rev. Lett. 91 (2003) 157406.
    [ 58 ] R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, M. Muccini, Nature Mater. 9 (2010) 496.
    [ 59 ] S. Seo, B.-N. Park, P. G. Evans, Appl. Phys. Lett. 88 (2006) 232114.
    [ 60 ] B. C. Thompson, J. M. J. Frechet, Angew. Chem. Int. Ed. 47 (2008) 58.
    [ 61 ] J. Zaumseil, C. L. Donley, J.-S. Kim, R. H. Friend, H. Sirringhaus, Adv. Mater. 18 (2006) 2708.
    [ 62 ] H. Derouiche, S. Saidi, A. B. Mohamed, Smart Grid and Renewable Energy 2 (2011) 278.
    [ 63 ] N. Hiroshiba, R. Hayakawa, T. Chikyow, K. Matsuishi, Y. Wakayama, Org. Electron. 12 (2011) 1336.
    [ 64 ] S. Schols, S. Verlaak, C. Rolin, D. Cheyns, J. Genoe, P. Heremans, Adv. Func. Mater. 18 (2008) 136.
    [ 65 ] M. Gad-el-Hak, The MEMS Handbook (CRC Press, FL, 2002) 16.
    [ 66 ] C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 14 (2002) 99.
    [ 67 ] Y. H. Lo, Emerging Optoelectronic Technologies and Applications (World Scientific, 1997) 251.
    [ 68 ] B. G. Yacobi, Semiconductor Materials: An Introduction tp Basic Principles (Springer, Berlin, 2003)
    [ 69 ] C. I. Ho, Investigation of Temperature and Optical Illumination on Organic Thin Film Transistors for AMLCD Applications (NSYSU, M.S. thesis, 2005)
    [ 70 ] O. Ostroverkhova, D. G. Cooke, S. Shcherbyna, R. F. Egerton, F. A. Hegmann, R. R. Tykwinski, J. E. Anthony, Phys. Rev. B 71 (2005) 35204.
    [ 71 ] V. Podzorov, E. Menard, J. A. Rogers, M. E. Gershenson, Phys. Rev. Lett. 95 (2005) 226601.
    [ 72 ] D. Braga, G. Horowitz, Adv. Mater. 21 (2009) 1473.
    [ 73 ] P. H. Wobkenberg, Thin Film Transistors for Large Area Opto/Electronics (Imperial College, Ph.D. thesis, 2009).
    [ 74 ] F. So, Organic Electronics: Materials, Processing, Devices and Applications (CRC Press, FL, 2002).
    [ 75 ] A. Miller, E. Abrahams, Phys. Rev. 120 (1960) 745.
    [ 76 ] A. K. Tripathi, Structure and Electronic Characterization of Single Crystals of Ambipolar Semiconductors: Diindenoperyleneand Diphenylanthracene (Indien, Ph.D. thesis, 2008).
    [ 77 ] P. M. BW. T. G Gruenbaum, E. H. Magin, Jpn. J. Appl. Phys. 35 (1996) 2698.
    [ 78 ] G. Dennler, N. S. Sariciftci, C. J. Brabec, Conjugated Polymer-based Organic Solar Cells in Semiconducting Polymers (Wiley-VCH Verlag GmbH, Weinheim, 2006).
    [ 79 ] P. G. Le Comber, W. E. Spear, Phys. Rev. Lett. 25 (1970) 509.
    [ 80 ] G. Meller, T. Grasser, Advances in Polymer Science 223 (Springer Verlag, 2009).
    [ 81 ] G. Hadziioannou, G. G. Malliaras, Semiconducting Polymers, Chemistry, Physics and Engineering 2 (Wiley-VCH, Weinheim, 2007).
    [ 82 ] V. Coropceanu, J. Cornil, D. A. da S. Filho, Y. Olivier, R. Silbey, J. L. Bredas, Chem. Rev. 107 (2007) 926.
    [ 83 ] G. Horowitz, Adv. Mater. 10 (1998) 365.
    [ 84 ] D. Braga, G. Horowitz, Adv. Mater. 21 (2009) 1473.
    [ 85 ] K. N. N. Unni, S. D. Seignon, J. M. Nunzi, J. Phys. D: Appl. Phys. 38 (2005) 1148.
    [ 86 ] J. R. Macdonald, H. P. Bachinger, J. Biol. Chem. 276 (2001) 25399.
    [ 87 ] J. N. de Wit, Netherlands Milk and Diary Journal 35 (1981) 47.
    [ 88 ] P. Walstra, R. Jenness, Dairy Chemistry and Physics (1984).
    [ 89 ] M. Myrata, F. Tani, T. Higasa, Biosci. Biotech. Biochem. 57 (1993) 43.
    [ 90 ] P. Relkin, Crit. Rev. Food Sci. Nutr. 36 (1996) 565.
    [ 91 ] T. Peter, Adv. Protein Chem. 37 (1985) 161.
    [ 92 ] K. Takeda, M. Shigeta, J. Colloid Interface Sci. 117 (1987) 120.
    [ 93 ] K. A. Majorek, P. J. Porebski, A. Dayal, M. D. Zimmerman, K. Jablonska, A. J. Stewart, M. Chruszcz, W. Minor, Mol. Immunol. 52 (2012) 174.
    [ 94 ] K. Hirayama, S. Akashi, M. Furuya, K.-I. Fukuhara, Biochem. Biophys. Res. Commun. 173 (1990) 639.
    [ 95 ] G. Georgiou, E. D. Bernardez-ClerK, American Chemical Society (1991) 1.
    [ 96 ] T. McKee, Biochemistry (Wm. C. Brown Pub. 1996).
    [ 97 ] F. B. Armostrong, Biochemistry (Oxford, 1983).
    [ 98 ] S. Ostojic, V. Dragutinovic, M. Kicanovic, B. R. Simonovic, J. Serb. Chem. Soc. 72 (2007) 331.
    [ 99 ] H. Neurath, J. P. Greenstein, Chem. Rev. 32 (1943) 157.
    [ 100 ] M. Mamoru, N. Daisukeet, Chem. and Pharm. Bull. 40 (1992) 550.
    [ 101 ] W. Xie, C. D. Frisbie, Mater. Res. Soc. Bull. 38 (2013) 43.
    [ 102 ] S. H. Kim, K. Hong, W. Xie, K. H. Lee, S. Zhang, T. P. Lodge, C. D. Frisbie, Adv. Mater. 25 (2013) 1822.
    [ 103 ] T. Uemura, R. Hirahara, Y. Tominari, S. Ono, S. Seki, J. Takeya, Appl. Phys. Lett. 93 (2008) 263305.
    [ 104 ] T. Uemura, M. Yamagishi, S. Ono, J. Takeya, Appl. Phys. Lett. 95 (2009) 103301.
    [ 105 ] Y. Xia, J. H. Cho, J. Lee, P. P. Ruden, C. D. Frisbie, Adv. Mater. 21 (2009) 21.
    [ 106 ] Y. Yomogida, J. Pu, H. Shimotani, S. Ono, S. Hotta, Y. Iwasa, T. Takenobu, Adv. Mater. 24 (2012) 4392.
    [ 107 ] M. J. Panzer, C. D. Frisbie, Adv. Func. Mater. 16 (2006) 1051.
    [ 108 ] M. J. Panzer, C. R. Newman, C. D. Frisbie, Appl. Phys. Lett. 86 (2005) 103503.
    [ 109 ] A. S. Dhoot, J. D. Yuen, M. Heeny, I. McCulloch, D. Moses, A. J. Heeger, J. Proc. Natl. Acad. Sci. 103 (2006) 11834.
    [ 110 ] L. Herlogsson, X. Crispin, N. D. Robinson, M. Sandberg, O.-J. Hagel, G. Gustafsson, M. Berggren, Adv. Mater. 19 (2007) 97.
    [ 111 ] L. Herlogsson, Y.-Y. Noh, N. Zhao, X. Crispin, H. Sirringhaus, M. Berggren, Adv. Mater. 20 (2008) 4708.
    [ 112 ] E. Said, X. Crispin, L. Herlogsson, S. Elhag, N. D. Robinson, M. Berggren, Appl. Phys. Lett. 89 (2006) 143507.
    [ 113 ] P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwodiauer, S. Bauer, H. P. Brezina, D. Bauerle, N. S. Sariciftci, Org. Electron. 8 (2007) 648.
    [ 114 ] C.-H. Wang, C.-Y. Hsieh, J.-C. Hwang, Adv. Mater. 23 (2010) 1630.
    [ 115 ] L.-K. Mao, J.-C. Hwang, T.-H. Chang, C.-Y. Hsieh, L.-S. Tsai, Y.-L. Chueh, S. S. H. Hsu, P.-C. Lyu, T.-J. Liu, Org. Electro. 14 (2013) 1170.
    [ 116 ] C. Y. Hsieh, J. C. Hwang, T. H. Chang, J. Y. Li, S. H. Chen, Appl. Phys. Lett. 103 (2013) 023303.
    [ 117 ] T. H. Chang, C. P. Liao, J. C. Tsai, C. Y. Lee, J. C. Hwang, I. M. Tso, Y. L. Chueh, P. C. Lyu, J. Y. Gan, Org. Electron. 15 (2014) 954.
    [ 118 ] L. S. Tsai, J. C. Hwang, C. Y. Lee, Y. T. Lin, C. L. Tsai, T. H. Chang, Y. L. Chueh, H. F. Meng, Appl. Phys. Lett. 103 (2013) 233304.
    [ 119 ] G. Careri, A. Giansanti, J. A. Rupley, Phys. Rev. A 37 (1988) 2703.
    [ 120 ] G. Careri, A. Giansanti, J. A. Rupley, Natl. Acad. Sci. USA 83 (1986) 6810.
    [ 121 ] K. Hirayama, S. Akashi, M. Furuya, K.-I. Fukuhara, Biochem. Biophys. Res. Commun. 173 (1990) 639.
    [ 122 ] R. Pain, Current Protocols in Protein Science (John Wiley and Sons, 2004).
    [ 123 ] W. B. Gratzer, D. A. Cowburn, Nature 222 (1969) 426.
    [ 124 ] M. Jackson, H. H. Mantsch, Crit. Rev. Biochem. Mol. Biol. 30 (1995) 95.
    [ 125 ] W. Norde, C. E. Giacomelli, J. Biotechnol. 79 (2000) 259.
    [ 126 ] M. Egginger, S. Bauer, R. Schwodiauer, H. Neugebauer, N. S. Sariciftci, Monatsh. Chem. 140 (2009) 735.
    [ 127 ] M. H. Yoon, C. Kim, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 128 (2006) 12851.
    [ 128 ] S. H. Kim, S. Nam, J. Jang, K. Hong, C. Yang, D. S. Chung, C. E. Park, W. S. Choi, Appl. Phys. Lett. 105 (2009) 104509.
    [ 129 ] S. H. Kim, H. Yang, S. Y. Yang, K. Hong, D. Choi, C. Yang, D. S. Chung, C. E. Park, Org. Electron. 9 (2008) 673.
    [ 130 ] Z. Liu, F. Xue, Y. Su, Y. M. Lvov, K. Varahramyan, IEEE T. Nanotechnol. 5 (2006) 379.
    [ 131 ] W. Wu, H. Zhang, Y. Wang, S. Ye, Y. Guo, C. Di, G. Yu, D. Zhu, Y. Liu, Adv. Func. Mater. 18 (2008) 2593.
    [ 132 ] M. Mushrush, A. Facchetti, M. Lefenfeld, H. E. Katz, T. J. Mark, J. Am. Chem. Soc. 125 (2003) 9414.
    [ 133 ] A. Facchetti, J. Letizia, M. H. Yoon, M. Mushrush, H. E. Katz, T. J. Mark, Chem. Mater. 16 (2004) 4715.
    [ 134 ] N. Kirova, S. Brazovskii, Synth. Met. 76 (1996) 229.
    [ 135 ] A. Salleo, R. A. Street, Phys. Rev. B 70 (2004) 235324.
    [ 136 ] G. Paasch, S. Scheinert, A. Herasimovich, I. Horselmann, T. Lindner, Phys. Status. Solidi. A 205 (2008) 534.
    [ 137 ] K. Bradley, J. Cumings, A. Star, J. C. P. Gabriel, G. Grunder, Nano Lett. 3 (2003) 639.
    [ 138 ] G. Velu, C. Legrand, O. Tharaud, A. Chapoton, D. Remiens, G. Horowitz, Apply. Phys. Lett. 79 (2001) 659.
    [ 139 ] T. Kodzasa, M. Yoshida, S. Uemura, T. Kamata, Synth. Met. 137 (2003) 943.
    [ 140 ] R. Schroeder, L. A. Majewski, M. Grell, Adv. Mater. 16 (20004) 633.
    [ 141 ] R. Schroeder, L. A. Majewski, M. Voigt, M. Grell, IEEE Electron. Dev. Lett. 26 (2005) 69.
    [ 142 ] S. Y. Park, M. Park, H. H. Lee, Appl. Phys. Lett. 85 (2004) 2283.
    [ 143 ] S. Uemura, M. Yoshida, S. Hoshino, T. Kodzaza, T. Kamata, Thin Solid Films 378 (2003) 438.
    [ 144 ] P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwodiauer, S. Bauer, H. Piglmayer- Brezina, D. Bauerle, N. S. Sariciftci, Org. Electron. 8 (2007) 648.
    [ 145 ] M. J. Panzer, C. R. Newman, C. D. Feisbie, Appl. Phys. Lett. 86 (2005) 203503.
    [ 146 ] O. Emanuele, L. Simone, F. Reatrice, S. Erika, L. Paolo, B. Annalisa, Org. Electron. 12 (2011) 477.
    [ 147 ] D. K. Hwang, M. S. Oh, J. M. Hwang, J. H. Kim, S. Im, Appl. Phys. Lett. 92 (2008) 013304.
    [ 148 ] C. A. Lee, D.-W. Park, K.-D. Jung, B.-J. Kim, Y.-C. Kim, J. D. Lee, B.-G. Park, Appl. Phys.Lett. 89 (2006) 262120.
    [ 149 ] G. Careri, A. Giansanti, J. A. Rupley, Proc. Natl. Acad. Sci. USA 83 (1986) 6810.
    [ 150 ] G. Lu, H. Usta, C. Risko, L. Wang, A. Facchetti, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 130 (2008) 7670.
    [ 151 ] I. McCulloch, C. Bailey, M. Giles, M. Heeney, I. Love, M. Shkunov, D. Sparrowe, S. Tierney, Chem. Mater. 17 (2005) 1381.
    [ 152 ] I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. M. Zhang, M. L. Chabinyc, R. J. Kline, M. D. Mcgehee, M. F. Toney, Nat. Mater. 5 (2006) 328.
    [ 153 ] M. Heeney, C. Bailey, K. Genevicius, M. Shkunov, D. Sparrowe, S. Tierney, I. McCulloch, J. Am. Chem. Soc. 127 (2005) 1078.
    [ 154 ] A. R. Murphy, J. S. Liu, C. Luscombe, D. Kavulak, J. M. J. Frechet, R. J. Kline, M. D. McGehee, Chem. Mater. 17 (2005) 4892.
    [ 155 ] B. S. Ong, Y. Yu, P. Liu, S. Gardner, J. Am. Chem. Soc. 126 (2004) 3378.
    [ 156 ] S. Haas, Y. Takahashi, K. Takimiya, T. aseawa, Appl. Phys. Lett. 95 (2009) 022111.
    [ 157 ] R. S. S.-Carrera, S. Atahan, J. Schrier, A. A.-Guzik, J. Phys. Chem. C 114 (2010) 2334.
    [ 158 ] 蔡峻偉, 張淑美, 有機發光二極體封裝材料發展, Chemistry (The Chinese Chem. Soc., Taipei) 63 (2005) 373.
    [ 159 ] S. Bertolazzi, J. Wunsche, F. Cicoira, C. Santato, Appl. Phys. Lett. 99 (2011) 013301.
    [ 160 ] J.-M. Choi, J. Lee, D. K. Hwang, J. H. Kim, S. Im, Appl. Phys. Lett. 88 (2006) 043508.
    [ 161 ] P. S. Abthagir, Y.-G. Ha, E.-A. You, S.-H. Jeong, H.-S. Seo, J.-H. Choi, J. Phys. Chem. B 109 (2005) 23918.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE