研究生: |
張茜毓 Chang, Chien-Yu |
---|---|
論文名稱: |
研究SNB-1和RAB-3在線蟲神經系統中的軸突運輸 Investigating axonal transport of SNB-1 and RAB-3 in the nervous system of C. elegans |
指導教授: |
王歐力
Wangner, Oliver I. |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 軸突運輸 、線蟲 |
外文關鍵詞: | axonal transport, C. elegans, presynaptic protein |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
神經細胞是種高度特化的細胞,具有一軸突和多個樹突,分別負責訊號傳遞和訊號接收。細胞本體裡新合成的蛋白質會被打包成囊泡狀結構由分子馬達運輸至目的地。分子馬達kineisin和dynein負責胞內長途的運輸。然而分子馬達與貨物(突觸囊泡、RNA、粒線體等等)間的辨認和調控的機制仍有待研究。KIF1A/UNC-104 (kineisin)負責突觸囊泡運輸。近來研究顯示突觸前區域蛋白質Liprin-α/SYD-2可調控KIF1A/UNC-104在軸突上的聚集和運輸效率。KIF1A/UNC-104利用其C端的PH domain連接上突觸囊泡胞膜的脂質(PIP2),我們假設此連接不足以提供分子馬達—貨物間的專一性辨識。另一突觸前區域蛋白質RIM/UNC-10的C端具有Liprin-α/SYD-2結合部位,N端可和Rab3/RAB-3結合。因此我們假設有另一連結(RAB-3—UNC-10—SYD-2) 可連接分子馬達和突觸囊泡。我們在ΔPH-UNC-104中研究是否除了PH domain以外還有其他和囊泡的連結,我們比較不同突觸囊泡標誌(SNB-1和RAB-3)和ΔPH-UNC-104間的螢光共位分析,結果顯示兩者的螢光共位分析並無差異。我們轉而比較RAB-3和SNB-1在syd-2 或unc-10突變株中的運輸,結果在syd-2突變株中SNB-1和RAB-3運輸皆受影響,而在unc-10突變株中僅RAB-3運輸有所影響而不影響SNB-1運輸,此結果指出我們所提出的連結(RAB-3—UNC-10—SYD-2)可能存在。
Neurons are specialized cells with an axon for signal conduction and transmission and dendrites for signal reception. Newly synthesized proteins in the cell body are packed into vesicular structures and are then transported by individual transporters to their destinations. Molecular motors as kinesins and dyneins are responsible for the long-range cargo (precursors, synaptic vesicles, mitochondria, RNA granules etc.) transport in neurons. Motor-cargo recognition and regulation of transport, however, remains broadly elusive. Kinesin-3 motor KIF1A/UNC-104 is responsible for synaptic vesicle precursor transport. Recent studies reveal that the pre-synaptic protein Liprin-α/SYD-2 regulates KIF1A/UNC-104 clustering along axons and motor transport efficiency. KIF1A/UNC-104 is known to attach to synaptic vesicles through a motor-lipid interaction. The C-terminal PH-domain of KIF1A/UNC-104 can specifically and directly bind to acidic phospholipids (PIP2), which are located in the vesicle membrane, and thereby connect the motor to the cargo. However, in this study we propose that the sole lipid-PH-domain interaction may not be sufficient for motor-cargo binding and recognition. Interestingly, RIM/UNC-10 reveals a binding site for Liprin-α/SYD-2 at the C-terminus while its N-terminus binds to Rab3/RAB-3. Therefore, we propose an additional linker RAB-3/UNC-10/SYD-2 for the UNC-104/vesicle interaction. Thus, we set out to investigate colocalization between UNC-104ΔPH::GFP and SNB-1::mRFP as well as UNC-104ΔPH::GFP and mCherry::RAB-3 to understand whether or not the additional linkage exists between UNC-104 and synaptic vesicle, and results revealed that there is no difference between RAB-3- or SNB-1-carrying vesicles. To understand the role of UNC-10 and SYD-2 on SNB-1 and RAB-3 vesicle transport, we monitored axonal trafficking using confocal spinning disk microscopy in C. elegans carrying unc-10 and syd-2 null mutations, and results revealed that both RAB-3 and SNB-1 trafficking were affected in syd-2 background, while in unc-10 mutants only RAB-3 trafficking was affected, and this may suggest that the proposed additional linkage RAB-3—UNC-10—SYD-2 may exist and help motor associate with its cargo.
Ally, S., A. G. Larson, et al. (2009). "Opposite-polarity motors activate one another to trigger cargo transport in live cells." J Cell Biol 187(7): 1071-1082.
Blasius, T. L., D. Cai, et al. (2007). "Two binding partners cooperate to activate the molecular motor Kinesin-1." J Cell Biol 176(1): 11-17.
Bolte, S. and F. P. Cordelieres (2006). "A guided tour into subcellular colocalization analysis in light microscopy." J Microsc 224(Pt 3): 213-232.
Brenner, S. (1974). "The genetics of Caenorhabditis elegans." Genetics 77(1): 71-94.
Dai, Y., H. Taru, et al. (2006). "SYD-2 Liprin-alpha organizes presynaptic active zone formation through ELKS." Nat Neurosci 9(12): 1479-1487.
Deken, S. L., R. Vincent, et al. (2005). "Redundant localization mechanisms of RIM and ELKS in Caenorhabditis elegans." J Neurosci 25(25): 5975-5983.
Dolder, M., A. Engel, et al. (1996). "The micelle to vesicle transition of lipids and detergents in the presence of a membrane protein: towards a rationale for 2D crystallization." FEBS Lett 382(1-2): 203-208.
Finney, M. and G. Ruvkun (1990). "The unc-86 gene product couples cell lineage and cell identity in C. elegans." Cell 63(5): 895-905.
Fukuda, M. (2008). "Regulation of secretory vesicle traffic by Rab small GTPases." Cell Mol Life Sci 65(18): 2801-2813.
Geppert, M., Y. Goda, et al. (1997). "The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion." Nature 387(6635): 810-814.
Goldstein, A. Y., X. Wang, et al. (2008). "Axonal transport and the delivery of pre-synaptic components." Curr Opin Neurobiol 18(5): 495-503.
Gracheva, E. O., G. Hadwiger, et al. (2008). "Direct interactions between C. elegans RAB-3 and Rim provide a mechanism to target vesicles to the presynaptic density." Neurosci Lett 444(2): 137-142.
Hall, D. H. and E. M. Hedgecock (1991). "Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans." Cell 65(5): 837-847.
Hammond, J. W., D. Cai, et al. (2009). "Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition." PLoS Biol 7(3): e72.
Hirokawa, N., Y. Noda, et al. (2009). "Kinesin superfamily motor proteins and intracellular transport." Nat Rev Mol Cell Biol 10(10): 682-696.
Hirokawa, N. and R. Takemura (2004). "Molecular motors in neuronal development, intracellular transport and diseases." Curr Opin Neurobiol 14(5): 564-573.
Iwasaki, K., J. Staunton, et al. (1997). "aex-3 encodes a novel regulator of presynaptic activity in C. elegans." Neuron 18(4): 613-622.
Iwasaki, K. and R. Toyonaga (2000). "The Rab3 GDP/GTP exchange factor homolog AEX-3 has a dual function in synaptic transmission." EMBO J 19(17): 4806-4816.
Klopfenstein, D. R., M. Tomishige, et al. (2002). "Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor." Cell 109(3): 347-358.
Klopfenstein, D. R. and R. D. Vale (2004). "The lipid binding pleckstrin homology domain in UNC-104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans." Mol Biol Cell 15(8): 3729-3739.
Ko, J., M. Na, et al. (2003). "Interaction of the ERC family of RIM-binding proteins with the liprin-alpha family of multidomain proteins." J Biol Chem 278(43): 42377-42385.
Koushika, S. P., J. E. Richmond, et al. (2001). "A post-docking role for active zone protein Rim." Nat Neurosci 4(10): 997-1005.
Kumar, J., B. C. Choudhary, et al. (2010). "The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo." PLoS Genet 6(11): e1001200.
Li, Y., L. X. Hou, et al. (2007). "Studies of the central nervous system-derived CAD cell line, a suitable model for intraneuronal transport studies?" J Neurosci Res 85(12): 2601-2609.
Lin, C. G., Y. C. Lin, et al. (1997). "Characterization of Rab3A, Rab3B and Rab3C: different biochemical properties and intracellular localization in bovine chromaffin cells." Biochem J 324 ( Pt 1): 85-90.
Mahoney, T. R., Q. Liu, et al. (2006). "Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans." Mol Biol Cell 17(6): 2617-2625.
Mello, C. C., J. M. Kramer, et al. (1991). "Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences." EMBO J 10(12): 3959-3970.
Miller, K. E., J. DeProto, et al. (2005). "Direct observation demonstrates that Liprin-alpha is required for trafficking of synaptic vesicles." Curr Biol 15(7): 684-689.
Niwa, S., Y. Tanaka, et al. (2008). "KIF1Bbeta- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD." Nat Cell Biol 10(11): 1269-1279.
Nonet, M. L. (1999). "Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein-GFP fusions." J Neurosci Methods 89(1): 33-40.
Nonet, M. L., O. Saifee, et al. (1998). "Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants." J Neurosci 18(1): 70-80.
Nonet, M. L., J. E. Staunton, et al. (1997). "Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles." J Neurosci 17(21): 8061-8073.
Ohtsuka, T., E. Takao-Rikitsu, et al. (2002). "Cast: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and munc13-1." J Cell Biol 158(3): 577-590.
Olsen, O., K. A. Moore, et al. (2006). "Synaptic transmission regulated by a presynaptic MALS/Liprin-alpha protein complex." Curr Opin Cell Biol 18(2): 223-227.
Otsuka, A. J., A. Jeyaprakash, et al. (1991). "The C. elegans unc-104 gene encodes a putative kinesin heavy chain-like protein." Neuron 6(1): 113-122.
Patel, N., D. Thierry-Mieg, et al. (1993). "Cloning by insertional mutagenesis of a cDNA encoding Caenorhabditis elegans kinesin heavy chain." Proc Natl Acad Sci U S A 90(19): 9181-9185.
Qi, Y., J. K. Wang, et al. (1997). "Characterization of a CNS cell line, CAD, in which morphological differentiation is initiated by serum deprivation." J Neurosci 17(4): 1217-1225.
Sakamoto, R., D. T. Byrd, et al. (2005). "The Caenorhabditis elegans UNC-14 RUN domain protein binds to the kinesin-1 and UNC-16 complex and regulates synaptic vesicle localization." Mol Biol Cell 16(2): 483-496.
Schoch, S., P. E. Castillo, et al. (2002). "RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone." Nature 415(6869): 321-326.
Shin, H., M. Wyszynski, et al. (2003). "Association of the kinesin motor KIF1A with the multimodular protein liprin-alpha." J Biol Chem 278(13): 11393-11401.
Stryker, E. and K. G. Johnson (2007). "LAR, liprin alpha and the regulation of active zone morphogenesis." J Cell Sci 120(Pt 21): 3723-3728.
Takamori, S., M. Holt, et al. (2006). "Molecular anatomy of a trafficking organelle." Cell 127(4): 831-846.
Tomishige, M., D. R. Klopfenstein, et al. (2002). "Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization." Science 297(5590): 2263-2267.
Vale, R. D. (2003). "The molecular motor toolbox for intracellular transport." Cell 112(4): 467-480.
Wagner, O. I., A. Esposito, et al. (2009). "Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans." Proc Natl Acad Sci U S A 106(46): 19605-19610.
Yonekawa, Y., A. Harada, et al. (1998). "Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice." J Cell Biol 141(2): 431-441.
Zhen, M. and Y. Jin (2004). "Presynaptic terminal differentiation: transport and assembly." Curr Opin Neurobiol 14(3): 280-287.