研究生: |
陳麗芬 Chen, Li-Fen |
---|---|
論文名稱: |
鎘對腎臟細胞中金屬硫蛋白、穀胱甘肽與硫氧化還原蛋白-1表現之相關性的研究 Studies on the Relationship among Metallothionein, Glutathione and Thioredoxin-1 Expressions in HEK293 Cells under Cadmium Stimulation |
指導教授: |
林立元
Lin, Lih-Yuan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 鎘 |
外文關鍵詞: | MT, GSH, TRX 1 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鎘是環境中常見的污染物質,透過ROS的產生使細胞遭受氧化逆境進而導致細胞死亡。Metallothionein (MT)與glutathione (GSH) 是解除細胞內鎘毒性的主要生物分子。鎘會與thioredoxin (Trx)的活性中心結合,抑制Trx活性進而影響細胞死亡路徑。為了要探討鎘如何影響MT基因、GSH與Trx三者之間的相互關係,我們將HEK293細胞處理鎘,發現γ-glutamylcysteine synthetase (γ-GCS )表現量降低並且伴隨細胞內GSH消耗。鎘誘導MT基因大量表現,造成Trx 1蛋白質表現量減少,並且促使Trx 1氧化。接著我們利用N-acetylcysteine (NAC)與DL-buthionine-[S,R]-sulfoximine (BSO)來改變細胞內GSH含量,並在鎘的共同處理下觀察MT基因與Trx 1的變化。由實驗結果發現NAC可以恢復鎘處理造成的GSH消耗,降低MT基因的誘導與Trx 1的氧化,BSO則進一步導致Trx 1完全氧化。隨後將質體送入HEK293細胞中表現Trx 1或利用RNAi技術knockdown Trx 1表現,探討MT基因與GSH的相互關係。細胞內GSH含量不受Trx 1蛋白質表現而影響,驗證GSH與Trx是獨立的兩個系統。Knockdown Trx 1並與鎘共同處理之下,發現MT基因受到誘導的程度降低,可能是間接影響其他蛋白質活性,進而改變MTF-1調控MT基因的表現,其明確機制需更多的研究來加以證實。
Almazan, G., Liu, H.N., Khorchid, A., Sundararajan, S., Martinez-Bermudez, A.K. and Chemtob, S. (2000) Exposure of developing oligodendrocytes to cadmium causes HSP72 induction, free radical generation, reduction in glutathione levels, and cell death. Free Radic Biol Med, 29, 858-869.
Amiard, J.C., Amiard-Triquet, C., Barka, S., Pellerin, J. and Rainbow, P.S. (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol, 76, 160-202.
Andrews, G.K. (2000) Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol, 59, 95-104.
Arai, R.J., Masutani, H., Yodoi, J., Debbas, V., Laurindo, F.R., Stern, A. and Monteiro, H.P. (2006) Nitric oxide induces thioredoxin-1 nuclear translocation: possible association with the p21Ras survival pathway. Biochem Biophys Res Commun, 348, 1254-1260.
Arai, R.J., Ogata, F.T., Batista, W.L., Masutani, H., Yodoi, J., Debbas, V., Augusto, O., Stern, A. and Monteiro, H.P. (2008) Thioredoxin-1 promotes survival in cells exposed to S-nitrosoglutathione: Correlation with reduction of intracellular levels of nitrosothiols and up-regulation of the ERK1/2 MAP Kinases. Toxicol Appl Pharmacol, 233, 227-237.
Ballatori, N. (1994) Glutathione mercaptides as transport forms of metals. Adv Pharmacol, 27, 271-298.
Bello, R.I., Alcain, F.J., Gomez-Diaz, C., Lopez-Lluch, G., Navas, P. and Villalba, J.M. (2003) Hydrogen peroxide- and cell-density-regulated expression of NADH-cytochrome b5 reductase in HeLa cells. J Bioenerg Biomembr, 35, 169-179.
Benhar, M., Forrester, M.T., Hess, D.T. and Stamler, J.S. (2008) Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science, 320, 1050-1054.
Benhar, M. and Stamler, J.S. (2005) A central role for S-nitrosylation in apoptosis. Nat Cell Biol, 7, 645-646.
Bertini, R., Howard, O.M., Dong, H.F., Oppenheim, J.J., Bizzarri, C., Sergi, R., Caselli, G., Pagliei, S., Romines, B., Wilshire, J.A., Mengozzi, M., Nakamura, H., Yodoi, J., Pekkari, K., Gurunath, R., Holmgren, A., Herzenberg, L.A., Herzenberg, L.A. and Ghezzi, P. (1999) Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells. J Exp Med, 189, 1783-1789.
Bloomfield, K.L., Osborne, S.A., Kennedy, D.D., Clarke, F.M. and Tonissen, K.F. (2003) Thioredoxin-mediated redox control of the transcription factor Sp1 and regulation of the thioredoxin gene promoter. Gene, 319, 107-116.
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-254.
Casagrande, S., Bonetto, V., Fratelli, M., Gianazza, E., Eberini, I., Massignan, T., Salmona, M., Chang, G., Holmgren, A. and Ghezzi, P. (2002) Glutathionylation of human thioredoxin: a possible crosstalk between the glutathione and thioredoxin systems. Proc Natl Acad Sci U S A, 99, 9745-9749.
Chrestensen, C.A., Starke, D.W. and Mieyal, J.J. (2000) Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. J Biol Chem, 275, 26556-26565.
Cohn, V.H. and Lyle, J. (1966) A fluorometric assay for glutathione. Anal Biochem, 14, 434-440.
Ejnik, J., Robinson, J., Zhu, J., Forsterling, H., Shaw, C.F. and Petering, D.H. (2002) Folding pathway of apo-metallothionein induced by Zn2+, Cd2+ and Co2+. J Inorg Biochem, 88, 144-152.
Endo, T., Kimura, O., Sasaya, M., Takada, M. and Sakata, M. (1995) Na(+)- and energy-dependent transport of cadmium into LLC-PK1 cells. Biol Pharm Bull, 18, 1689-1693.
Ercal, N., Gurer-Orhan, H. and Aykin-Burns, N. (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem, 1, 529-539.
Gasdaska, J.R., Kirkpatrick, D.L., Montfort, W., Kuperus, M., Hill, S.R., Berggren, M. and Powis, G. (1996) Oxidative inactivation of thioredoxin as a cellular growth factor and protection by a Cys73-->Ser mutation. Biochem Pharmacol, 52, 1741-1747.
Griffith, O.W. (1999) Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med, 27, 922-935.
Gunes, C., Heuchel, R., Georgiev, O., Muller, K.H., Lichtlen, P., Bluthmann, H., Marino, S., Aguzzi, A. and Schaffner, W. (1998) Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1. Embo J, 17, 2846-2854.
Haendeler, J. (2006) Thioredoxin-1 and posttranslational modifications. Antioxid Redox Signal, 8, 1723-1728.
Haendeler, J., Hoffmann, J., Tischler, V., Berk, B.C., Zeiher, A.M. and Dimmeler, S. (2002) Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat Cell Biol, 4, 743-749.
Haendeler, J., Popp, R., Goy, C., Tischler, V., Zeiher, A.M. and Dimmeler, S. (2005) Cathepsin D and H2O2 stimulate degradation of thioredoxin-1: implication for endothelial cell apoptosis. J Biol Chem, 280, 42945-42951.
Haendeler, J., Tischler, V., Hoffmann, J., Zeiher, A.M. and Dimmeler, S. (2004) Low doses of reactive oxygen species protect endothelial cells from apoptosis by increasing thioredoxin-1 expression. FEBS Lett, 577, 427-433.
Halvey, P.J., Watson, W.H., Hansen, J.M., Go, Y.M., Samali, A. and Jones, D.P. (2005) Compartmental oxidation of thiol-disulphide redox couples during epidermal growth factor signalling. Biochem J, 386, 215-219.
Hamer, D.H. (1986) Metallothionein. Annu Rev Biochem, 55, 913-951.
Hansen, J.M., Go, Y.M. and Jones, D.P. (2006a) Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol, 46, 215-234.
Hansen, J.M., Watson, W.H. and Jones, D.P. (2004) Compartmentation of Nrf-2 redox control: regulation of cytoplasmic activation by glutathione and DNA binding by thioredoxin-1. Toxicol Sci, 82, 308-317.
Hansen, J.M., Zhang, H. and Jones, D.P. (2006b) Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. Free Radic Biol Med, 40, 138-145.
Hirota, K., Matsui, M., Iwata, S., Nishiyama, A., Mori, K. and Yodoi, J. (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A, 94, 3633-3638.
Hirota, K., Murata, M., Sachi, Y., Nakamura, H., Takeuchi, J., Mori, K. and Yodoi, J. (1999) Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem, 274, 27891-27897.
Im, J.Y., Paik, S.G. and Han, P.L. (2006) Cadmium-induced astroglial death proceeds via glutathione depletion. J Neurosci Res, 83, 301-308.
Inaba, T., Kobayashi, E., Suwazono, Y., Uetani, M., Oishi, M., Nakagawa, H. and Nogawa, K. (2005) Estimation of cumulative cadmium intake causing Itai-itai disease. Toxicol Lett, 159, 192-201.
Jaiswal, A.K. (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med, 36, 1199-1207.
Kadima, W. and Rabenstein, D.L. (1990) Nuclear magnetic resonance studies of the solution chemistry of metal complexes. 26. Mixed ligand complexes of cadmium, nitrilotriacetic acid, glutathione, and related ligands. J Inorg Biochem, 38, 277-288.
Kanzok, S.M., Fechner, A., Bauer, H., Ulschmid, J.K., Muller, H.M., Botella-Munoz, J., Schneuwly, S., Schirmer, R. and Becker, K. (2001) Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science, 291, 643-646.
Kennette, W., Collins, O.M., Zalups, R.K. and Koropatnick, J. (2005) Basal and zinc-induced metallothionein in resistance to cadmium, cisplatin, zinc, and tertbutyl hydroperoxide: studies using MT knockout and antisense-downregulated MT in mammalian cells. Toxicol Sci, 88, 602-613.
Kim, S.M., Park, J.G., Baek, W.K., Suh, M.H., Lee, H., Yoo, S.K., Jung, K.H., Suh, S.I. and Jang, B.C. (2008) Cadmium specifically induces MKP-1 expression via the glutathione depletion-mediated p38 MAPK activation in C6 glioma cells. Neurosci Lett, 440, 289-293.
Kim, Y.C., Masutani, H., Yamaguchi, Y., Itoh, K., Yamamoto, M. and Yodoi, J. (2001) Hemin-induced activation of the thioredoxin gene by Nrf2. A differential regulation of the antioxidant responsive element by a switch of its binding factors. J Biol Chem, 276, 18399-18406.
Kimura, O., Endo, T. and Sakata, M. (1997) Uptake of Cd-metallothionein into LLC-PK1 cells: a comparative study with CdCl2. Biol Pharm Bull, 20, 158-162.
Kondo, N., Nakamura, H., Masutani, H. and Yodoi, J. (2006) Redox regulation of human thioredoxin network. Antioxid Redox Signal, 8, 1881-1890.
Lemaire, S., Keryer, E., Stein, M., Schepens, I.I., Issakidis-Bourguet, E., C, G.r.-H., Miginiac-Maslow, M. and Jacquot, J.P. (1999) Heavy-metal regulation of thioredoxin gene expression in chlamydomonas reinhardtii. Plant Physiol, 120, 773-778.
Li, Y., Kimura, T., Huyck, R.W., Laity, J.H. and Andrews, G.K. (2008) Zinc-induced formation of a coactivator complex containing the zinc-sensing transcription factor MTF-1, p300/CBP, and Sp1. Mol Cell Biol, 28, 4275-4284.
Liu, H., Nishitoh, H., Ichijo, H. and Kyriakis, J.M. (2000) Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol, 20, 2198-2208.
Lopez, E., Arce, C., Oset-Gasque, M.J., Canadas, S. and Gonzalez, M.P. (2006) Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med, 40, 940-951.
Martelli, A., Rousselet, E., Dycke, C., Bouron, A. and Moulis, J.M. (2006) Cadmium toxicity in animal cells by interference with essential metals. Biochimie, 88, 1807-1814.
Michelet, L., Zaffagnini, M., Marchand, C., Collin, V., Decottignies, P., Tsan, P., Lancelin, J.M., Trost, P., Miginiac-Maslow, M., Noctor, G. and Lemaire, S.D. (2005) Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants. Proc Natl Acad Sci U S A, 102, 16478-16483.
Miranda-Vizuete, A., Damdimopoulos, A.E. and Spyrou, G. (2000) The mitochondrial thioredoxin system. Antioxid Redox Signal, 2, 801-810.
Miranda-Vizuete, A., Ljung, J., Damdimopoulos, A.E., Gustafsson, J.A., Oko, R., Pelto-Huikko, M. and Spyrou, G. (2001) Characterization of Sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoa. J Biol Chem, 276, 31567-31574.
Missirlis, F., Ulschmid, J.K., Hirosawa-Takamori, M., Gronke, S., Schafer, U., Becker, K., Phillips, J.P. and Jackle, H. (2002) Mitochondrial and cytoplasmic thioredoxin reductase variants encoded by a single Drosophila gene are both essential for viability. J Biol Chem, 277, 11521-11526.
Mitchell, D.A. and Marletta, M.A. (2005) Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol, 1, 154-158.
Mitchell, D.A., Morton, S.U., Fernhoff, N.B. and Marletta, M.A. (2007) Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proc Natl Acad Sci U S A, 104, 11609-11614.
Muller, E.G. (1996) A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Mol Biol Cell, 7, 1805-1813.
Nishinaka, Y., Masutani, H., Nakamura, H. and Yodoi, J. (2001) Regulatory roles of thioredoxin in oxidative stress-induced cellular responses. Redox Rep, 6, 289-295.
Nkabyo, Y.S., Ziegler, T.R., Gu, L.H., Watson, W.H. and Jones, D.P. (2002) Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells. Am J Physiol Gastrointest Liver Physiol, 283, G1352-1359.
Nordberg, J. and Arner, E.S. (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med, 31, 1287-1312.
Pathak, N. and Khandelwal, S. (2006) Influence of cadmium on murine thymocytes: potentiation of apoptosis and oxidative stress. Toxicol Lett, 165, 121-132.
Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 29, e45.
Pompella, A., Visvikis, A., Paolicchi, A., De Tata, V. and Casini, A.F. (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol, 66, 1499-1503.
Powis, G. and Montfort, W.R. (2001) Properties and biological activities of thioredoxins. Annu Rev Pharmacol Toxicol, 41, 261-295.
Ravi, D., Muniyappa, H. and Das, K.C. (2005) Endogenous thioredoxin is required for redox cycling of anthracyclines and p53-dependent apoptosis in cancer cells. J Biol Chem, 280, 40084-40096.
Robbins, A.H., McRee, D.E., Williamson, M., Collett, S.A., Xuong, N.H., Furey, W.F., Wang, B.C. and Stout, C.D. (1991) Refined crystal structure of Cd, Zn metallothionein at 2.0 A resolution. J Mol Biol, 221, 1269-1293.
Rollin-Genetet, F., Berthomieu, C., Davin, A.H. and Quemeneur, E. (2004) Escherichia coli thioredoxin inhibition by cadmium: two mutually exclusive binding sites involving Cys32 and Asp26. Eur J Biochem, 271, 1299-1309.
Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K. and Ichijo, H. (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. Embo J, 17, 2596-2606.
Shibuya, I. and Douglas, W.W. (1992) Calcium channels in rat melanotrophs are permeable to manganese, cobalt, cadmium, and lanthanum, but not to nickel: evidence provided by fluorescence changes in fura-2-loaded cells. Endocrinology, 131, 1936-1941.
Shukla, G.S., Chiu, J. and Hart, B.A. (2000a) Enhanced expression of pulmonary gamma-glutamylcysteine synthetase heavy subunit in rats exposed to cadmium aerosols. Toxicol Appl Pharmacol, 163, 249-259.
Shukla, G.S., Shukla, A., Potts, R.J., Osier, M., Hart, B.A. and Chiu, J.F. (2000b) Cadmium-mediated oxidative stress in alveolar epithelial cells induces the expression of gamma-glutamylcysteine synthetase catalytic subunit and glutathione S-transferase alpha and pi isoforms: potential role of activator protein-1. Cell Biol Toxicol, 16, 347-362.
Singhal, R.K., Anderson, M.E. and Meister, A. (1987) Glutathione, a first line of defense against cadmium toxicity. Faseb J, 1, 220-223.
Souza, J.M., Choi, I., Chen, Q., Weisse, M., Daikhin, E., Yudkoff, M., Obin, M., Ara, J., Horwitz, J. and Ischiropoulos, H. (2000) Proteolytic degradation of tyrosine nitrated proteins. Arch Biochem Biophys, 380, 360-366.
Spielberger, J.C., Moody, A.D. and Watson, W.H. (2008) Oxidation and nuclear localization of thioredoxin-1 in sparse cell cultures. J Cell Biochem, 104, 1879-1889.
Stajn, A., Zikic, R.V., Ognjanovic, B., Saicic, Z.S., Pavlovic, S.Z., Kostic, M.M. and Petrovic, V.M. (1997) Effect of cadmium and selenium on the antioxidant defense system in rat kidneys. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol, 117, 167-172.
Tao, L., Jiao, X., Gao, E., Lau, W.B., Yuan, Y., Lopez, B., Christopher, T., RamachandraRao, S.P., Williams, W., Southan, G., Sharma, K., Koch, W. and Ma, X.L. (2006) Nitrative inactivation of thioredoxin-1 and its role in postischemic myocardial apoptosis. Circulation, 114, 1395-1402.
Ueda, S., Nakamura, H., Masutani, H., Sasada, T., Yonehara, S., Takabayashi, A., Yamaoka, Y. and Yodoi, J. (1998) Redox regulation of caspase-3(-like) protease activity: regulatory roles of thioredoxin and cytochrome c. J Immunol, 161, 6689-6695.
Ueno, M., Masutani, H., Arai, R.J., Yamauchi, A., Hirota, K., Sakai, T., Inamoto, T., Yamaoka, Y., Yodoi, J. and Nikaido, T. (1999) Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem, 274, 35809-35815.
Vatamaniuk, O.K., Mari, S., Lu, Y.P. and Rea, P.A. (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J Biol Chem, 275, 31451-31459.
Vido, K., Spector, D., Lagniel, G., Lopez, S., Toledano, M.B. and Labarre, J. (2001) A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J Biol Chem, 276, 8469-8474.
Waalkes, M.P. (2003) Cadmium carcinogenesis. Mutat Res, 533, 107-120.
Watson, W.H., Pohl, J., Montfort, W.R., Stuchlik, O., Reed, M.S., Powis, G. and Jones, D.P. (2003) Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif. J Biol Chem, 278, 33408-33415.
Watson, W.H., Yang, X., Choi, Y.E., Jones, D.P. and Kehrer, J.P. (2004) Thioredoxin and its role in toxicology. Toxicol Sci, 78, 3-14.
Westin, G. and Schaffner, W. (1988) A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. Embo J, 7, 3763-3770.
Wimmer, U., Wang, Y., Georgiev, O. and Schaffner, W. (2005) Two major branches of anti-cadmium defense in the mouse: MTF-1/metallothioneins and glutathione. Nucleic Acids Res, 33, 5715-5727.
Zangger, K., Oz, G., Otvos, J.D. and Armitage, I.M. (1999) Three-dimensional solution structure of mouse [Cd7]-metallothionein-1 by homonuclear and heteronuclear NMR spectroscopy. Protein Sci, 8, 2630-2638.
Zhang, J., Velsor, L.W., Patel, J.M., Postlethwait, E.M. and Block, E.R. (1999) Nitric oxide-induced reduction of lung cell and whole lung thioredoxin expression is regulated by NF-kappaB. Am J Physiol, 277, L787-793.