研究生: |
涂智翔 Tu, Chih-Hsiang |
---|---|
論文名稱: |
結構生物學在吡唑胺類衍生物誘導間變性淋巴激酶蛋白結構變化之分析與探討 Structural Biology Studies reveal the Conformational Switching of Anaplastic Lymphoma Kinase (ALK) by Pyrazolylamine Derivatives |
指導教授: |
伍素瑩
Wu, Su-Ying 呂平江 Lyu, Ping-Chiang |
口試委員: |
李惠珍
Lee, Hui-Jhen 陳俊榮 Chen, Chun-Jung 蔣維棠 Jiaang, Weir-Torn |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 260 |
中文關鍵詞: | 蛋白結晶學 、間變性淋巴瘤激酶 、第一型激酶抑制劑 、第二型激酶抑制劑 |
外文關鍵詞: | Protein crystallography, Anaplastic lymphoma kinase (ALK), Type-I kinase inhibitor, Type-II kinase inhibitor |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究顯示,間變性淋巴瘤激酶(Anaplastic lymphoma kinase, ALK)相關的染色體易位、基因放大以及結構中的點突變,和許多癌症的發生息息相關。因此,在使用小分子藥物做為癌症的治療上,間變性淋巴瘤激酶是一個相當有潛力的藥物靶點。截至目前為止,整理相關藥物開發的文獻,間變性淋巴瘤激酶與小分子抑制劑的結合模式大多以第一型的結合模式(Type-I kinase inhibitors)為主。雖然已有數個第一型間變性淋巴瘤激酶抑制劑已獲得美國食品藥物管理局(US FDA)認證,且在藥效(potency)的表現上相當的出色,但是多數病人在治療過程中都常伴隨著副作用的產生。因此,追求藥效更好、副作用更少的新型的間變性淋巴瘤激酶抑制劑,仍待持續不斷的研究開發。除了第一型激酶抑制劑之外,第二型的間變性淋巴瘤激酶抑制劑(Type-II kinase inhibitors),也有望能為第一型激酶抑制劑以外的第二種選擇。但是受限於傳統的酵素活性分析的機制,目前第二型的間變性淋巴瘤激酶抑制劑的研究上相對缺乏,因此同時也限制了在分子層次下的第二型間變性淋巴瘤激酶抑制劑的開發與設計。
在此篇研究中,我們以蛋白結晶學及結構生物學的基本架構為研究方法基礎;確認前導藥物(lead) BPR-1J297與間變性淋巴瘤激酶蛋白的結合模式屬於第二型激酶抑制劑(Type-IIA kinase inhibitor)。與不同的激酶/第二型激酶抑制劑複合體作比較,在結構細部的探討中發現,BPR-1J297的結合同時會造成間變性淋巴瘤激酶中activation loop (A-loop), αC-helix, 和juxtamembrane (JM) domain構型的重大變化。這些構型變化的部位,對於在正常生理情況下間變性淋巴瘤激酶的自抑制(autoinhibition)、 磷酸化(phosphorylation) 、活化(activation)以及訊息傳遞(signal pathway)的調控,扮演了相當重要的角色。除此之外,在結構與活性關係的定量化研究(structure-activity relationship, SAR)中發現,BPR-1J297化學結構上的變化不僅僅影響活性(或配體效率),同時也造成了與間變性淋巴瘤激酶結合模式上的變化。除此之外,我們的研究方法中也包括了生物物理學上的相關研究;實驗結果證實了BPR-1J297疏水性尾端結構(urea-substituted tail moiety) 的修飾賦予了藥物結合動力學慢上慢下的特性。這樣的結果也與我們從複合體結構中得到的結果一致。在回顧過往的研究中,激酶抑制劑的結合能造成蛋白構型如此重大改變的現象並不多見,且通常缺少完整的結構上的實證。但在本篇研究中,我們清楚地證明小分子化學結構上的修飾能夠直接調控第一型與第二型的結合模式的變化,且更進一步影響了間變性淋巴瘤激酶蛋白結構的整體構型。
我們希望藉由結構生物學在間變性淋巴瘤激酶BPR-1J297以及其衍生物複合體結構的分析與探討,搭配相關物化特性的相關研究,提供一個在化學結構上的優化方向,以利於吡唑胺類衍生物在作為間變性淋巴瘤激酶抑制劑上的發展。
Studies have shown that anaplastic lymphoma kinase (ALK) chromosomal translocation, gene amplification and point mutations are associated with various human cancers. Hence, ALK has been proposed as a potential drug target in the treatment of cancers and the inhibition of irregularly activated ALK by small molecules constitutes a promising approach. Currently, most of ALK inhibitors are developed as the type-I kinase inhibitors. Although some of type-I inhibitors are FDA-approved and exhibit excellent drug potency, those are associated with some adverse effects. For this reason, continuous development of ALK inhibitors is needed. Type II kinase inhibitor is expected to be an alternative approach for the development of novel ALK inhibitors. However, only few researches have been devoted to type-II ALK inhibitor’s studies due to the limitations of the traditional enzymatic assay. Limited type-II ALK structural studies are available, which may also impede the development of the novel type-II ALK inhibitors.
In our research, protein crystallography and structural biology studies of BPR-1J297 with ALK kinase domain revealed that BPR-1J297 adopts a type-IIA binding mode. BPR-1J297, distinct from others published type-IIA inhibitors, simultaneously causes the conformational change in activation loop, αC-helix, and juxtamembrane domain of ALK, which are all important domains for ALK autoinhibition, phosphorylation, activation, and downstream signal pathway regulation. The structure-activity relationship (SAR) of BPR-1J297 reveals that minor modifications to the chemical structure of BPR-1J297 led to significant differences in the ALK potency (or ligand efficiency) as well as alters the binding mode between type-I and type-II in ALK. In addition, biophysics studies were performed and that hydrophobic urea-substituted tail moiety endowed BPR-1J297 with slow association rate and dissociation rate, in consistent with the results in structure biology studies. To our knowledge, this is the first research comprehensively demonstrated that chemical modification in a small molecule structure can directly regulate the switch between the type I and type II binding modes, and induce dramatic conformational changes in protein structures.
Structural biology studies of ALK in complex with BPR-1J297 and its analogues together with the physicochemical properties studies provide the insights on the future chemical structural optimization of pyrazolylamine series as potential ALK inhibitors in the treatment of cancer reagents.
(1) Gotink, K. J.; Verheul, H. M. Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 2010, 13, 1-14.
(2) Robinson, D. R.; Wu, Y. M.; Lin, S. F. The protein tyrosine kinase family of the human genome. Oncogene 2000, 19, 5548-5557.
(3) Paul, M. K.; Mukhopadhyay, A. K. Tyrosine kinase - Role and significance in Cancer. International Journal of Medical Sciences 2004, 1, 101-115.
(4) Kolibaba, K. S.; Druker, B. J. Protein tyrosine kinases and cancer. Biochimica et Biophysica Acta 1997, 1333, F217-248.
(5) Hubbard, S. R.; Till, J. H. Protein tyrosine kinase structure and function. Annu Rev Biochem 2000, 69, 373-398.
(6) Hubbard, S. R. Juxtamembrane autoinhibition in receptor tyrosine kinases. Nature Reviews. Molecular Cell Biology 2004, 5, 464-471.
(7) Locascio, L. E.; Donoghue, D. J. KIDs rule: regulatory phosphorylation of RTKs. Trends in Biochemical Sciences 2013, 38, 75-84.
(8) Roskoski, R. Structure and regulation of Kit protein-tyrosine kinase - The stem cell factor receptor. Biochem Bioph Res Co 2005, 338, 1307-1315.
(9) Hubbard, S. R.; Mohammadi, M.; Schlessinger, J. Autoregulatory mechanisms in protein-tyrosine kinases. The Journal of Biological Chemistry 1998, 273, 11987-11990.
(10) Xu, W. Q.; Harrison, S. C.; Eck, M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 1997, 385, 595-602.
(11) Boggon, T. J.; Eck, M. J. Structure and regulation of Src family kinases. Oncogene 2004, 23, 7918-7927.
(12) Superti-Furga, G.; Courtneidge, S. A. Structure-function relationships in Src family and related protein tyrosine kinases. Bioessays 1995, 17, 321-330.
(13) Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA: A CancerJournal for Clinicians 2014, 64, 9-29.
(14) Cancer registry annual report, 2011 taiwan. In Health promotion administration ministry of health and welfare taiwan: 2014.
(15) Anand, P.; Kunnumakara, A. B.; Sundaram, C.; Harikumar, K. B.; Tharakan, S. T.; Lai, O. S.; Sung, B. Y.; Aggarwal, B. B. Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Pharm Res-Dord 2008, 25, 2097-2116.
(16) Muller, S.; Chaikuad, A.; Gray, N. S.; Knapp, S. The ins and outs of selective kinase inhibitor development. Nature Chemical Biology 2015, 11, 818-821.
(17) Guimaraes, C. R.; Rai, B. K.; Munchhof, M. J.; Liu, S.; Wang, J.; Bhattacharya, S. K.; Buckbinder, L. Understanding the impact of the P-loop conformation on kinase selectivity. Journal of Chemical Information and Modeling 2011, 51, 1199-1204.
(18) Oliveira, T. M.; Ahmad, R.; Engh, R. A. VX680 binding in Aurora A: pi-pi interactions involving the conserved aromatic amino acid of the flexible glycine-rich loop. The Journal of Physical Chemistry. A 2011, 115, 3895-3904.
(19) Kornev, A. P.; Haste, N. M.; Taylor, S. S.; Eyck, L. F. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proceedings of the National Academy of Sciences of The United States of America 2006, 103, 17783-17788.
(20) Wu, P.; Nielsen, T. E.; Clausen, M. H. FDA-approved small-molecule kinase inhibitors. Trends in Pharmacological Sciences 2015, 36, 422-439.
(21) Novel Drug Approvals for 2015. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugInnovation/ucm430302.htm
(22) Wu, P.; Nielsen, T. E.; Clausen, M. H. Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discovery Today 2016.
(23) Blanc, J.; Geney, R.; Menet, C. Type II kinase inhibitors: an opportunity in cancer for rational design. Anti-cancer Agents in Medicinal Chemistry 2013, 13, 731-747.
(24) Zuccotto, F.; Ardini, E.; Casale, E.; Angiolini, M. Through the "Gatekeeper Door": Exploiting the Active Kinase Conformation. Journal of Medicinal Chemistry 2010, 53, 2681-2694.
(25) Roskoski, R. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacological Research 2016, 103, 26-48.
(26) Okamoto, K.; Ikemori-Kawada, M.; Jestel, A.; von Konig, K.; Funahashi, Y.; Matsushima, T.; Tsuruoka, A.; Inoue, A.; Matsui, J. Distinct binding mode of multikinase inhibitor lenvatinib revealed by biochemical characterization. ACS Medicinal Chemistry Letters 2015, 6, 89-94.
(27) Liu, Y.; Gray, N. S. Rational design of inhibitors that bind to inactive kinase conformations. Nature Chemical Biology 2006, 2, 358-364.
(28) Liao, J. J. Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors. Journal of Medicinal Chemistry 2007, 50, 409-424.
(29) van Linden, O. P.; Kooistra, A. J.; Leurs, R.; de Esch, I. J.; de Graaf, C. KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space. Journal of Medicinal Chemistry 2014, 57, 249-277.
(30) Gild, M. L.; Bullock, M.; Robinson, B. G.; Clifton-Bligh, R. Multikinase inhibitors: a new option for the treatment of thyroid cancer. Nature Reviews. Endocrinology 2011, 7, 617-624.
(31) Schindler, T.; Bornmann, W.; Pellicena, P.; Miller, W. T.; Clarkson, B.; Kuriyan, J. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 2000, 289, 1938-1942.
(32) Zhao, Z.; Wu, H.; Wang, L.; Liu, Y.; Knapp, S.; Liu, Q.; Gray, N. S. Exploration of type II binding mode: A privileged approach for kinase inhibitor focused drug discovery? ACS Chemical Biology 2014, 9, 1230-1241.
(33) Pargellis, C.; Tong, L.; Churchill, L.; Cirillo, P. F.; Gilmore, T.; Graham, A. G.; Grob, P. M.; Hickey, E. R.; Moss, N.; Pav, S.; Regan, J. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nature Structural Biology 2002, 9, 268-272.
(34) Regan, J.; Pargellis, C. A.; Cirillo, P. F.; Gilmore, T.; Hickey, E. R.; Peet, G. W.; Proto, A.; Swinamer, A.; Moss, N. The kinetics of binding to p38MAP kinase by analogues of BIRB 796. Bioorganic & Medicinal Chemistry Letters 2003, 13, 3101-3104.
(35) Chaikuad, A.; Tacconi, E. M.; Zimmer, J.; Liang, Y.; Gray, N. S.; Tarsounas, M.; Knapp, S. A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics. Nature Chemical Biology 2014, 10, 853-860.
(36) Nagar, B.; Bornmann, W. G.; Pellicena, P.; Schindler, T.; Veach, D. R.; Miller, W. T.; Clarkson, B.; Kuriyan, J. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res 2002, 62, 4236-4243.
(37) Tu, C. H.; Lin, W. H.; Peng, Y. H.; Hsu, T.; Wu, J. S.; Chang, C. Y.; Lu, C. T.; Lyu, P. C.; Shih, C.; Jiaang, W. T.; Wu, S. Y. Pyrazolylamine Derivatives Reveal the Conformational Switching between Type I and Type II Binding Modes of Anaplastic Lymphoma Kinase (ALK). Journal of Medicinal Chemistry 2016, 59, 3906-3919.
(38) Flaherty, K. T.; Infante, J. R.; Daud, A.; Gonzalez, R.; Kefford, R. F.; Sosman, J.; Hamid, O.; Schuchter, L.; Cebon, J.; Ibrahim, N.; Kudchadkar, R.; Burris, H. A., 3rd; Falchook, G.; Algazi, A.; Lewis, K.; Long, G. V.; Puzanov, I.; Lebowitz, P.; Singh, A.; Little, S.; Sun, P.; Allred, A.; Ouellet, D.; Kim, K. B.; Patel, K.; Weber, J. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. The New England Journal of Medicine 2012, 367, 1694-1703.
(39) FDA Approval for Trametinib. http://www.cancer.gov/about-cancer/treatment/drugs/fda-trametinib
(40) Ho, M. Y. K.; Morris, M. J.; Pirhalla, J. L.; Bauman, J. W.; Pendry, C. B.; Orford, K. W.; Morrison, R. A.; Cox, D. S. Trametinib, a first-in-class oral MEK inhibitor mass balance study with limited enrollment of two male subjects with advanced cancers. Xenobiotica 2014, 44, 352-368.
(41) Lamba, V.; Ghosh, I. New directions in targeting protein kinases: focusing upon true allosteric and bivalent inhibitors. Curr Pharm Des 2012, 18, 2936-2945.
(42) Copeland, R. A.; Pompliano, D. L.; Meek, T. D. Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov 2006, 5, 730-739.
(43) Leproult, E.; Barluenga, S.; Moras, D.; Wurtz, J. M.; Winssinger, N. Cysteine mapping in conformationally distinct kinase nucleotide binding sites: application to the design of selective covalent inhibitors. Journal of Medicinal Chemistry 2011, 54, 1347-1355.
(44) Solca, F.; Dahl, G.; Zoephel, A.; Bader, G.; Sanderson, M.; Klein, C.; Kraemer, O.; Himmelsbach, F.; Haaksma, E.; Adolf, G. R. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. The Journal of Pharmacology and Experimental Therapeutics 2012, 343, 342-350.
(45) Hopkins, A. L.; Groom, C. R.; Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Discovery Today 2004, 9, 430-431.
(46) Waring, M. J. Defining optimum lipophilicity and molecular weight ranges for drug candidates-Molecular weight dependent lower logD limits based on permeability. Bioorganic & Medicinal Chemistry Letters 2009, 19, 2844-2851.
(47) Hann, M. M. Molecular obesity, potency and other addictions in drug discovery. Medchemcomm 2011, 2, 349-355.
(48) Hann, M. M.; Keseru, G. M. Finding the sweet spot: the role of nature and nurture in medicinal chemistry. Nat Rev Drug Discov 2012, 11, 355-365.
(49) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001, 46, 3-26.
(50) Gleeson, M. P. Generation of a set of simple, interpretable ADMET rules of thumb. Journal of Medicinal Chemistry 2008, 51, 817-834.
(51) Waring, M. J. Lipophilicity in drug discovery. Expert Opin Drug Discov 2010, 5, 235-248.
(52) Abad-Zapatero, C.; Metz, J. T. Ligand efficiency indices as guideposts for drug discovery. Drug Discovery Today 2005, 10, 464-469.
(53) Schultes, S.; de Graaf, C.; Haaksma, E. E. J.; de Esch, I. J. P.; Leurs, R.; Krämer, O. Ligand efficiency as a guide in fragment hit selection and optimization. Drug Discovery Today: Technologies 2010, 7, e157-e162.
(54) Shultz, M. D. Setting expectations in molecular optimizations: Strengths and limitations of commonly used composite parameters. Bioorganic & Medicinal Chemistry Letters 2013, 23, 5980-5991.
(55) Leeson, P. D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 2007, 6, 881-890.
(56) Morris, S. W.; Kirstein, M. N.; Valentine, M. B.; Dittmer, K.; Shapiro, D. N.; Look, A. T.; Saltman, D. L. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1995, 267, 316-317.
(57) Hallberg, B.; Palmer, R. H. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nature Reviews. Cancer 2013, 13, 685-700.
(58) Roskoski, R., Jr. Anaplastic lymphoma kinase (ALK): structure, oncogenic activation, and pharmacological inhibition. Pharmacological Research : The Official Journal of The Italian Pharmacological Society 2013, 68, 68-94.
(59) Lee, C. C.; Jia, Y.; Li, N.; Sun, X.; Ng, K.; Ambing, E.; Gao, M. Y.; Hua, S.; Chen, C.; Kim, S.; Michellys, P. Y.; Lesley, S. A.; Harris, J. L.; Spraggon, G. Crystal structure of the ALK (anaplastic lymphoma kinase) catalytic domain. The Biochemical Journal 2010, 430, 425-437.
(60) Stoica, G. E.; Kuo, A.; Powers, C.; Bowden, E. T.; Sale, E. B.; Riegel, A. T.; Wellstein, A. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. The Journal of Biological Chemistry 2002, 277, 35990-35998.
(61) Webb, T. R.; Slavish, J.; George, R. E.; Look, A. T.; Xue, L.; Jiang, Q.; Cui, X.; Rentrop, W. B.; Morris, S. W. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. Expert Review of Anticancer Therapy 2009, 9, 331-356.
(62) Cui, J. J.; Tran-Dube, M.; Shen, H.; Nambu, M.; Kung, P. P.; Pairish, M.; Jia, L.; Meng, J.; Funk, L.; Botrous, I.; McTigue, M.; Grodsky, N.; Ryan, K.; Padrique, E.; Alton, G.; Timofeevski, S.; Yamazaki, S.; Li, Q.; Zou, H.; Christensen, J.; Mroczkowski, B.; Bender, S.; Kania, R. S.; Edwards, M. P. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). Journal of Medicinal Chemistry 2011, 54, 6342-6363.
(63) Soda, M.; Choi, Y. L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; Bando, M.; Ohno, S.; Ishikawa, Y.; Aburatani, H.; Niki, T.; Sohara, Y.; Sugiyama, Y.; Mano, H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007, 448, 561-566.
(64) Kazandjian, D.; Blumenthal, G. M.; Chen, H. Y.; He, K.; Patel, M.; Justice, R.; Keegan, P.; Pazdur, R. FDA approval summary: crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements. The Oncologist 2014, 19, e5-e11.
(65) FDA Approves Crizotinib.
http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm376058.htm
(66) Thomas, R. K. Overcoming drug resistance in ALK-rearranged lung cancer. The New England Journal of Medicine 2014, 370, 1250-1251.
(67) Wu, J.; Savooji, J.; Liu, D. Second- and third-generation ALK inhibitors for non-small cell lung cancer. J Hematol Oncol 2016, 9, 19.
(68) Huang, Q.; Johnson, T. W.; Bailey, S.; Brooun, A.; Bunker, K. D.; Burke, B. J.; Collins, M. R.; Cook, A. S.; Cui, J. J.; Dack, K. N.; Deal, J. G.; Deng, Y. L.; Dinh, D.; Engstrom, L. D.; He, M.; Hoffman, J.; Hoffman, R. L.; Johnson, P. S.; Kania, R. S.; Lam, H.; Lam, J. L.; Le, P. T.; Li, Q.; Lingardo, L.; Liu, W.; Lu, M. W.; McTigue, M.; Palmer, C. L.; Richardson, P. F.; Sach, N. W.; Shen, H.; Smeal, T.; Smith, G. L.; Stewart, A. E.; Timofeevski, S.; Tsaparikos, K.; Wang, H.; Zhu, H.; Zhu, J.; Zou, H. Y.; Edwards, M. P. Design of potent and selective inhibitors to overcome clinical anaplastic lymphoma kinase mutations resistant to crizotinib. Journal of Medicinal Chemistry 2014, 57, 1170-1187.
(69) Niederst, M. J.; Engelman, J. A. Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer. Sci Signal 2013, 6, re6.
(70) Leach, B. Novel Compound LDK378 Receives Breakthrough Designation for ALK+ NSCLC. http://www.onclive.com/web-exclusives/Novel-Compound-LDK378-Receives-Breakthrough-Designation-for-ALK-NSCLC
(71) Chen, J.; Jiang, C.; Wang, S. LDK378: a promising anaplastic lymphoma kinase (ALK) inhibitor. Journal of Medicinal Chemistry 2013, 56, 5673-5674.
(72) Yao, S. FDA approves Zykadia for late-stage lung cancer. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm395299.htm
(73) Sakamoto, H.; Tsukaguchi, T.; Hiroshima, S.; Kodama, T.; Kobayashi, T.; Fukami, T. A.; Oikawa, N.; Tsukuda, T.; Ishii, N.; Aoki, Y. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell 2011, 19, 679-690.
(74) Mori, M.; Ueno, Y.; Konagai, S.; Fushiki, H.; Shimada, I.; Kondoh, Y.; Saito, R.; Mori, K.; Shindou, N.; Soga, T.; Sakagami, H.; Furutani, T.; Doihara, H.; Kudoh, M.; Kuromitsu, S. The selective anaplastic lymphoma receptor tyrosine kinase inhibitor ASP3026 induces tumor regression and prolongs survival in non-small cell lung cancer model mice. Molecular Cancer Therapeutics 2014, 13, 329-340.
(75) Huang, W. S.; Liu, S.; Zou, D.; Thomas, M.; Wang, Y.; Zhou, T.; Romero, J.; Kohlmann, A.; Li, F.; Qi, J.; Cai, L.; Dwight, T. A.; Xu, Y.; Xu, R.; Dodd, R.; Toms, A.; Parillon, L.; Lu, X.; Anjum, R.; Zhang, S.; Wang, F.; Keats, J.; Wardwell, S. D.; Ning, Y.; Xu, Q.; Moran, L. E.; Mohemmad, Q. K.; Jang, H. G.; Clackson, T.; Narasimhan, N. I.; Rivera, V. M.; Zhu, X.; Dalgarno, D.; Shakespeare, W. C. Discovery of Brigatinib (AP26113), a Phosphine Oxide-Containing, Potent, Orally Active Inhibitor of Anaplastic Lymphoma Kinase. Journal of Medicinal Chemistry 2016, 59, 4948-4964.
(76) Leal, T.; Wakelee, H.; Infante, J.; Blumenschein, G.; Reckamp, K.; Carter, C.; Waqar, S.; Gockerman, J.; Lovly, C.; Dukart, G.; Harrow, K.; Liang, C.; Gibbons, J.; Horn, L. PD2.02 (also presented as P1.44): Phase I/II Trial of X-396, a Novel ALK Inhibitor, in Patients With ALK+ NSCLC. Journal of Thoracic Oncology : Official Publication of The International Association for The Study of Lung Cancer 2016, 11, S176-S177.
(77) Johnson, T. W.; Richardson, P. F.; Bailey, S.; Brooun, A.; Burke, B. J.; Collins, M. R.; Cui, J. J.; Deal, J. G.; Deng, Y. L.; Dinh, D.; Engstrom, L. D.; He, M.; Hoffman, J.; Hoffman, R. L.; Huang, Q.; Kania, R. S.; Kath, J. C.; Lam, H.; Lam, J. L.; Le, P. T.; Lingardo, L.; Liu, W.; McTigue, M.; Palmer, C. L.; Sach, N. W.; Smeal, T.; Smith, G. L.; Stewart, A. E.; Timofeevski, S.; Zhu, H.; Zhu, J.; Zou, H. Y.; Edwards, M. P. Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations. Journal of Medicinal Chemistry 2014, 57, 4720-4744.
(78) Ardini, E.; Menichincheri, M.; Banfi, P.; Bosotti, R.; De Ponti, C.; Pulci, R.; Ballinari, D.; Ciomei, M.; Texido, G.; Degrassi, A.; Avanzi, N.; Amboldi, N.; Saccardo, M. B.; Casero, D.; Orsini, P.; Bandiera, T.; Mologni, L.; Anderson, D.; Wei, G.; Harris, J.; Vernier, J. M.; Li, G.; Felder, E.; Donati, D.; Isacchi, A.; Pesenti, E.; Magnaghi, P.; Galvani, A. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. Molecular Cancer Therapeutics 2016, 15, 628-639.
(79) Huse, M.; Kuriyan, J. The conformational plasticity of protein kinases. Cell 2002, 109, 275-282.
(80) Jura, N.; Zhang, X.; Endres, N. F.; Seeliger, M. A.; Schindler, T.; Kuriyan, J. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Molecular Cell 2011, 42, 9-22.
(81) Donella-Deana, A.; Marin, O.; Cesaro, L.; Gunby, R. H.; Ferrarese, A.; Coluccia, A. M.; Tartari, C. J.; Mologni, L.; Scapozza, L.; Gambacorti-Passerini, C.; Pinna, L. A. Unique substrate specificity of anaplastic lymphoma kinase (ALK): development of phosphoacceptor peptides for the assay of ALK activity. Biochemistry 2005, 44, 8533-8542.
(82) Tartari, C. J.; Gunby, R. H.; Coluccia, A. M.; Sottocornola, R.; Cimbro, B.; Scapozza, L.; Donella-Deana, A.; Pinna, L. A.; Gambacorti-Passerini, C. Characterization of some molecular mechanisms governing autoactivation of the catalytic domain of the anaplastic lymphoma kinase. The Journal of Biological Chemistry 2008, 283, 3743-3750.
(83) Bossi, R. T.; Saccardo, M. B.; Ardini, E.; Menichincheri, M.; Rusconi, L.; Magnaghi, P.; Orsini, P.; Avanzi, N.; Borgia, A. L.; Nesi, M.; Bandiera, T.; Fogliatto, G.; Bertrand, J. A. Crystal structures of anaplastic lymphoma kinase in complex with ATP competitive inhibitors. Biochemistry 2010, 49, 6813-6825.
(84) Taylor, S. S.; Kornev, A. P. Protein kinases: evolution of dynamic regulatory proteins. Trends in Biochemical Sciences 2011, 36, 65-77.
(85) Taylor, S. S.; Keshwani, M. M.; Steichen, J. M.; Kornev, A. P. Evolution of the eukaryotic protein kinases as dynamic molecular switches. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 2012, 367, 2517-2528.
(86) Noble, M. E. M.; Endicott, J. A.; Johnson, L. N. Protein kinase inhibitors: Insights into drug design from structure. Science 2004, 303, 1800-1805.
(87) Levinson, N. M.; Kuchment, O.; Shen, K.; Young, M. A.; Koldobskiy, M.; Karplus, M.; Cole, P. A.; Kuriyan, J. A Src-like inactive conformation in the Abl tyrosine kinase domain. Plos Biol 2006, 4, 753-767.
(88) Camidge, D. R.; Bang, Y. J.; Kwak, E. L.; Iafrate, A. J.; Varella-Garcia, M.; Fox, S. B.; Riely, G. J.; Solomon, B.; Ou, S. H.; Kim, D. W.; Salgia, R.; Fidias, P.; Engelman, J. A.; Gandhi, L.; Janne, P. A.; Costa, D. B.; Shapiro, G. I.; Lorusso, P.; Ruffner, K.; Stephenson, P.; Tang, Y.; Wilner, K.; Clark, J. W.; Shaw, A. T. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol 2012, 13, 1011-1019.
(89) Rothenstein, J. M.; Letarte, N. Managing treatment-related adverse events associated with Alk inhibitors. Curr Oncol 2014, 21, 19-26.
(90) Seto, T.; Kiura, K.; Nishio, M.; Nakagawa, K.; Maemondo, M.; Inoue, A.; Hida, T.; Yamamoto, N.; Yoshioka, H.; Harada, M.; Ohe, Y.; Nogami, N.; Takeuchi, K.; Shimada, T.; Tanaka, T.; Tamura, T. CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, phase 1-2 study. Lancet Oncol 2013, 14, 590-598.
(91) Epstein, L. F.; Chen, H.; Emkey, R.; Whittington, D. A. The R1275Q neuroblastoma mutant and certain ATP-competitive inhibitors stabilize alternative activation loop conformations of anaplastic lymphoma kinase. The Journal of Biological Chemistry 2012, 287, 37447-37457.
(92) David R. O'Reilly, L. K. M., Verne A. Luckow. Baculovirus Expression Vectors: A Laboratory Manual. 1994.
(93) Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol 1997, 276, 307-326.
(94) Adams, P. D.; Afonine, P. V.; Bunkoczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.; Hung, L. W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R. J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 2010, 66, 213-221.
(95) Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K. Features and development of Coot. Acta Crystallogr D 2010, 66, 486-501.
(96) PyMOL. The PyMOL Molecular Graphics System, Version 1.7.4 Schrödinger, LLC.
(97) McNicholas, S.; Potterton, E.; Wilson, K. S.; Noble, M. E. Presenting your structures: the CCP4mg molecular-graphics software. Acta crystallographica. Section D, Biological crystallography 2011, 67, 386-394.
(98) Lee, D. F.; Chen, C. C.; Hsu, T. A.; Juang, J. L. A baculovirus superinfection system: efficient vehicle for gene transfer into Drosophila S2 cells. Journal of Virology 2000, 74, 11873-11880.
(99) Naggie, S.; Bentley, W. E. Appearance of protease activities coincides with p10 and polyhedrin-driven protein production in the baculovirus expression system: effects on yield. Biotechnology Progress 1998, 14, 227-232.
(100) Dierks, K.; Meyer, A.; Oberthur, D.; Rapp, G.; Einspahr, H.; Betzel, C. Efficient UV detection of protein crystals enabled by fluorescence excitation at wavelengths longer than 300 nm. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications 2010, 66, 478-484.
(101) Lin, W. H.; Hsieh, S. Y.; Yen, S. C.; Chen, C. T.; Yeh, T. K.; Hsu, T.; Lu, C. T.; Chen, C. P.; Chen, C. W.; Chou, L. H.; Huang, Y. L.; Cheng, A. H.; Chang, Y. I.; Tseng, Y. J.; Yen, K. R.; Chao, Y. S.; Hsu, J. T. A.; Jiaang, W. T. Discovery and evaluation of 3-phenyl-1H-5-pyrazolylamine-based derivatives as potent, selective and efficacious inhibitors of FMS-like tyrosine kinase-3 (FLT3). Bioorganic & Medicinal Chemistry 2011, 19, 4173-4182.
(102) Hsu, J. T. A.; Yeh, T. K.; Yen, S. C.; Chen, C. T.; Hsieh, S. Y.; Hsu, T.; Lu, C. T.; Chen, C. H.; Chou, L. H.; Chiu, C. H.; Chang, Y. I.; Tseng, Y. J.; Yen, K. R.; Chao, Y. S.; Lin, W. H.; Jiaang, W. T. 3-Phenyl-1H-5-pyrazolylamine-based derivatives as potent and efficacious inhibitors of FMS-like tyrosine kinase-3 (FLT3). Bioorganic & Medicinal Chemistry Letters 2012, 22, 4654-4659.
(103) Lin, W. H.; Hsu, J. T. A.; Hsieh, S. Y.; Chen, C. T.; Song, J. S.; Yen, S. C.; Hsu, T.; Lu, C. T.; Chen, C. H.; Chou, L. H.; Yang, Y. N.; Chiu, C. H.; Chen, C. P.; Tseng, Y. J.; Yen, K. J.; Yeh, C. F.; Chao, Y. S.; Yeh, T. K.; Jiaang, W. T. Discovery of 3-phenyl-1H-5-pyrazolylamine derivatives containing a urea pharmacophore as potent and efficacious inhibitors of FMS-like tyrosine kinase-3 (FLT3). Bioorganic & Medicinal Chemistry 2013, 21, 2856-2867.
(104) Tan, X.; Tester, R. W.; Luedtke, G. R.; Chakravarty, S.; Mavunkel, B. J.; Perumattam, J. J.; Lu, Q.; Nashashibi, I.; Jung, J.; Hu, J.; Liclican, A.; Almirez, R.; Tabora, J.; Tran, V.; Laney, M.; Levy, D. E.; Dugar, S. Design and synthesis of piperazine-indole p38 alpha MAP kinase inhibitors with improved pharmacokinetic profiles. Bioorganic & Medicinal Chemistry Letters 2010, 20, 828-831.
(105) Palmer, R. H.; Vernersson, E.; Grabbe, C.; Hallberg, B. Anaplastic lymphoma kinase: signalling in development and disease. The Biochemical Journal 2009, 420, 345-361.
(106) Wang, Y.; Mathis, C. A.; Huang, G. F.; Debnath, M. L.; Holt, D. P.; Shao, L.; Klunk, W. E. Effects of lipophilicity on the affinity and nonspecific binding of iodinated benzothiazole derivatives. J Mol Neurosci 2003, 20, 255-260.
(107) Jensen, L.; Astrand, P. O.; Osted, A.; Kongsted, J.; Mikkelsen, K. V. Polarizability of molecular clusters as calculated by a dipole interaction model. J Chem Phys 2002, 116, 4001-4010.
(108) Viswanadhan, V. N.; Ghose, A. K.; Revankar, G. R.; Robins, R. K. Atomic Physicochemical Parameters for 3 Dimensional Structure Directed Quantitative Structure - Activity Relationships .4. Additional Parameters for Hydrophobic and Dispersive Interactions and Their Application for an Automated Superposition of Certain Naturally-Occurring Nucleoside Antibiotics. J Chem Inf Comp Sci 1989, 29, 163-172.
(109) Ferrara, P.; Apostolakis, J.; Caflisch, A. Evaluation of a fast implicit solvent model for molecular dynamics simulations. Proteins 2002, 46, 24-33.