研究生: |
阮英偉 Un, Ieng-Wai |
---|---|
論文名稱: |
一維雙曲超材料的光學相變、表面態及塊材與邊緣對應 Phase Transition, Interface States and Bulk-Interface Correspondence of One-Dimensional Hyperbolic Metamaterials |
指導教授: |
嚴大任
Yen, Ta-Jen |
口試委員: |
果尚志
Gwo, Shan-gjr 蔡定平 Tsai, Din-Ping 任貽均 Jen, Yi-Jun 藍永強 Tsai, Din-Ping 林麗瓊 Lin, Li-Chyong 褚志崧 Chuu, Chih-Sung |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | 雙曲超材料 、表面態 、塊材與邊緣對應 |
外文關鍵詞: | Hyperbolic Metamaterials, Interface States, Bulk-Interface Correspondence |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雙曲色散超材料具有奇特的雙曲色散特性,在入射波長遠大於雙曲色散超材料的晶格大小時,其光學性質可由等效介質理論描述和預測。因此,我們利用表面電漿耦合來計算雙曲色散超材料的電漿子能帶結構以預測更準確的光學性質,該理論適用於任意晶格大小。我們透過計算雙曲色散超材料的表面阻抗,預測在帶隙中表面態的存在。藉由改變晶格中金屬與介電質的比例,雙曲色散超材料能分別與金屬、介電質或其他雙曲色散超材料形成表面態。我們更進一步找到帶隙中表面態的存在性與相鄰能帶的阻抗之間的密切關係,稱為塊材與邊緣對應。該塊材與邊緣對應關係適用於所有具有反轉對稱的雙曲色散超材料。最後,我們提出兩個實驗用以驗證表面態的存在,其一是利用寬頻入射光用棱鏡耦合出表面態並量測其反射率﹔其二是直接利用電子束直接激發表面態。
We first review the fundamental properties of the surface plasmon polariton (SPP) and the effective medium theory approach to hyperbolic metamaterials. Then we go beyond effective medium theory and calculate the plasmonic band structure of the one-dimensional hyperbolic metamaterial (1DHMM) based on the coupled SPPs. In the plasmonic band gap of 1DHMM, we scrutinize the existence of an interface state on three types of interfaces: dielectric/1DHMM, metal/1DHMM, and 1DHMM/1DHMM. The existence of the interface state is determined by the wave admittance of the 1DHMM in the gap region. Interestingly, we develope the rigorous relation between the existence of interface and the wave admittance in the band region, such relation is identified as the “bulk-interface correspondence” of
1DHMM. We further show that the “bulk-interface correspondence” holds for any 1DHMM with inversion symmetry. We also propose two potential experiments of exciting the interface states by using white light source and electron beam, respectively.
[1] H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science, vol. 316, no. 5823, pp. 430–432, 2007.
[2] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, no. 5514, pp. 77–79, 2001.
[3] S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater, vol. 9, no. 5, pp. 407–412, 2010.
[4] S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett., vol. 95, p. 137404, 2005.
[5] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184–4187, 2000.
[6] T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science, vol. 303, no. 5663, p. 1494, 2004.
[7] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, 1999.
[8] K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New. J. Phys., vol. 7, no. 1, p. 168, 2005.
[9] C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett., vol. 95, p. 203901, 2005.
[10] N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett., vol. 30, no. 11, pp. 1348–1350, 2005.
[11] H.-K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, A negative permeability material at red light,” Opt. Express, vol. 15, no. 3, pp. 1076–1083, 2007.
[12] J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett., vol. 85, pp. 3966–3969, 2000.
[13] J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, vol. 312, no. 5781, pp. 1780–1782, 2006.
[14] U. Leonhardt, “Optical conformal mapping,” Science, vol. 312, no. 5781, pp. 1777–1780, 2006.
[15] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977–980, 2006.
[16] U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New. J. Phys., vol. 8, no. 10, p. 247, 2006.
[17] W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photon., vol. 1, no. 4, pp. 224–227, 2007.
[18] H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater., vol. 9, no. 5, pp. 387–396, 2010.
[19] J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett., vol. 101, p. 203901, 2008.
[20] Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett., vol. 102, p. 253902, 2009.
[21] Y. Lai, H. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett., vol. 102, p. 093901, 2009.
[22] A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photon, vol. 7, no. 12, pp. 948–957, 2013.
[23] L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Progress in Quantum Electronics, vol. 40, pp. 1 – 40, 2015.
[24] Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express, vol. 14, no. 18, pp. 8247–8256, 2006.
[25] Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science, vol. 315, no. 5819, pp. 1686–1686, 2007.
[26] D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett., vol. 90, p. 077405, 2003.
[27] I. I. Smolyaninov and E. E. Narimanov, “Metric signature transitions in optical metamate- rials,” Phys. Rev. Lett., vol. 105, p. 067402, 2010.
[28] I. I. Smolyaninov, “Vacuum in a strong magnetic field as a hyperbolic metamaterial,” Phys. Rev. Lett., vol. 107, p. 253903, 2011.
[29] Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett., vol. 100, no. 18, p. 181105, 2012.
[30] K. V. Sreekanth, T. Biaglow, and G. Strangi, “Directional spontaneous emission enhancement in hyperbolic metamaterials,” J. Appl. Phys., vol. 114, no. 13, p. 134306, 2013.
[31] K. V. Sreekanth, A. D. Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett., vol. 103, no. 2, p. 023107, 2013.
[32] J. Li, J. Shao, Y.-H. Wang, M.-J. Zhu, J.-Q. Li, and Z.-G. Dong, “Toroidal dipolar response by a dielectric microtube metamaterial in the terahertz regime,” Opt. Express, vol. 23, no. 22, pp. 29138–29144, 2015.
[33] M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett., vol. 35, no. 11, pp. 1863–1865, 2010.
[34] Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express, vol. 21, no. 12, pp. 15014-15019, 2013.
[35] Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett., vol. 101, no. 13, p. 131106, 2012.
[36] D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nano., vol. 9, no. 1, pp. 48–53, 2014.
[37] J. Kim, V. P. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express, vol. 20, no. 7, pp. 8100–8116, 2012.
[38] A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B, vol. 86, p. 121108, 2012.
[39] A. M. DaSilva, Y.-C. Chang, T. Norris, and A. H. MacDonald, “Enhancement of photonic density of states in finite graphene multilayers,” Phys. Rev. B, vol. 88, p. 195411, 2013.
[40] T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett., vol. 99, no. 15, p. 151115, 2011.
[41] S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength
interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev., vol. 7, no. 2, pp. 265–271, 2013.
[42] J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science, vol. 321, no. 5891, pp. 930–930, 2008.
[43] Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express, vol. 16, no. 20, pp. 15439–15448, 2008.
[44] J. Yao, Y. Wang, K.-T. Tsai, Z. Liu, X. Yin, G. Bartal, A. M. Stacy, Y.-L. Wang, and X. Zhang, “Design, fabrication and characterization of indefinite metamaterials of nanowires,” Phil. Trans. Math. Phys. Eng. Sci., vol. 369, no. 1950, pp. 3434–3446, 2011.
[45] J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett., vol. 89, no. 26, p. 261102, 2006.
[46] C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: Physics and applications,” Adv. Mater, vol. 24, no. 31, pp. 4229–4248, 2012.
[47] A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater., vol. 6, no. 12, pp. 946–950, 2007.
[48] X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photon., vol. 6, no. 7, pp. 450–454, 2012.
[49] G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of al:zno as a plasmonic component for near-infrared metamaterials,” vol. 109, no. 23, pp. 8834–8838, 2012.
[50] T. U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett., vol. 100, no. 16, p. 161103, 2012.
[51] B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered
metal-dielectric system,” Phys. Rev. B, vol. 74, p. 115116, Sep 2006.
[52] H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science, vol. 336, no. 6078, pp. 205–209, 2012.
[53] L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett., vol. 98, p. 157403, 2007.
[54] J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett., vol. 99, p. 107401, 2007.
[55] Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today, vol. 12, no. 12, pp. 60 – 69, 2009.
[56] J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett., vol. 108, p. 097402, 2012.
[57] P. Moitra, B. A. Slovick, W. li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics, vol. 2, no. 6, pp. 692–698, 2015.
[58] A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett., vol. 12, no. 7, pp. 3749–3755, 2012.
[59] I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano, vol. 7, no. 9, pp. 7824–7832, 2013.
[60] P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photon., vol. 7, pp. 791–795, Oct 2013.
[61] S. Jahaniand Z. Jacob, “All-dielectric metamaterials,” Nat. Nano., vol.11, no.1, pp. 23–36, 2016.
[62] S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica, vol. 1, no. 4, pp. 250–256, 2014.
[63] A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X, vol. 5, p. 011036, 2015.
[64] Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt., vol. 15, no. 2, p. 023001, 2013.
[65] A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett., vol. 90, p. 107404, 2003.
[66] M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett., vol. 95, p. 227401, 2005.
[67] A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett., vol. 97, p. 177401, 2006.
[68] J. B. Pendry, “A chiral route to negative refraction,” Science, vol. 306, no. 5700, pp. 1353–1355, 2004.
[69] V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett., vol. 97, p. 167401, 2006.
[70] M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X, vol. 2, p. 031010, 2012.
[71] E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B, vol. 79, p. 035407, 2009.
[72] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science, vol. 325, no. 5947, pp. 1513–1515, 2009.
[73] C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett., vol. 104, p. 253902, 2010.
[74] Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology, vol. 27, no. 41, p. 412001, 2016.
[75] M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett., vol. 12, no. 5, pp. 2542–2547, 2012.
[76] W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett., vol. 96, p. 107401, 2006.
[77] H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature, vol. 444, no. 7119, pp. 597–600, 2006.
[78] D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett., vol. 91, no. 16, p. 164101, 2007.
[79] H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett., vol. 103, p. 147401, Oct 2009.
[80] T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science, vol. 325, no. 5947, pp. 1518–1521, 2009.
[81] Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett., vol. 10, no. 4, pp. 1347–1353, 2010.
[82] J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett., vol. 11, no. 5, pp. 2142–2144, 2011.
[83] L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nano., vol. 6, no. 10, pp. 630–634, 2011.
[84] K. Fuchi, A. R. Diaz, E. J. Rothwell, R. O. Ouedraogo, and J. Tang, “An origami tunable metamaterial,” J. Appl. Phys., vol. 111, no. 8, p. 084905, 2012.
[85] A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt., vol. 14, no. 11, p. 114009, 2012.
[86] A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear
fishnet metamaterials,” Appl. Phys. Lett., vol. 100, no. 12, p. 121113, 2012.
[87] Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of fano resonance in plasmonic nanostructure,” ACS Nano, vol. 6, no. 3, pp. 2385–2393, 2012.
[88] J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl., 2012.
[89] J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nano., vol. 8, pp. 252–255, Apr 2013.
[90] M. Fusheng, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl., vol. 3, p. e171, 2014.
[91] X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci Appl, vol. 4, p. e292, 2015.
[92] S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev., vol. 2, no. 1, p. 011303, 2015.
[93] N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nano., vol. 11, no. 1, pp. 16–22, 2016.
[94] C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas and Propagation Magazine, vol. 54, no. 2, pp. 10–35, 2012.
[95] C. Pfeiffer and A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett., vol. 110, p. 197401, 2013.
[96] S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater., vol. 11, no. 5, pp. 426–431, 2012.
[97] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science, vol. 334, no. 6054, pp. 333–337, 2011.
[98] F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett., vol. 12, no. 9, pp. 4932–4936, 2012.
[99] S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater., vol. 11, no. 5, pp. 450–454, 2012.
[100] X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin hall effect at metasurfaces,”
Science, vol. 339, no. 6126, pp. 1405–1407, 2013.
[101] X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science, vol. 335, no. 6067, pp. 427–427, 2012.
[102] G. Li, M. Kang, S. Chen, S. Zhang, E. Y.-B. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett., vol. 13, no. 9, pp. 4148–4151, 2013.
[103] J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science, vol. 340, no. 6130, pp. 331–334, 2013.
[104] X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light Sci. Appl., vol. 2, p. e72, 2013.
[105] D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science, vol. 345, no. 6194, pp. 298–302, 2014.
[106] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nano., vol. 10, no. 4, pp. 308–312, 2015.
[107] W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano, vol. 10, no. 12, pp. 10671–10680, 2016.
[108] C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial huygens’ surfaces,” Nano Lett., vol. 14, no. 5, pp. 2491–2497, 2014.
[109] F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett., vol. 110, p. 203903, 2013.
[110] N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science, vol. 340, no. 6138, pp. 1304–1307, 2013.
[111] B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E.-B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and spectral light shaping with metamaterials,” Adv. Mater., vol. 24, no. 47, pp. 6300–6304, 2012.
[112] N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett., vol. 12,
no. 12, pp. 6328–6333, 2012.
[113] W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett., vol. 36, no. 6, pp. 927–929, 2011.
[114] C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: Asymmetric transmission of light,” Phys. Rev. Lett., vol. 113, p. 023902,
2014.
[115] L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev., vol. 8, no. 4, pp. 626–632, 2014.
[116] C. Pfeiffer and A. Grbic, “Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis,” Phys. Rev. Applied, vol. 2, p. 044011, Oct 2014.
[117] M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater., vol. 3, no. 6, pp. 813–820, 2015.
[118] J. Cheng, D. Ansari-Oghol-Beig, and H. Mosallaei, “Wave manipulation with designer dielectric metasurfaces,” Opt. Lett., vol. 39, no. 21, pp. 6285–6288, 2014.
[119] Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett., vol. 14, no. 3, pp. 1394–1399, 2014.
[120] N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater., vol. 13, no. 2, pp. 139–150, 2014.
[121] Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett., vol. 101, p. 027402, 2008.
[122] S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter, vol. 14, no. 15, p. 4035, 2002.
[123] S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett., vol. 102, p. 023901, Jan 2009.
[124] V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett., vol. 7, no. 7, pp. 1996–1999, 2007.
[125] A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett., vol. 8, no. 9, pp. 2940–2943, 2008.
[126] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824–830, 2003.
[127] J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys., vol. 70, no. 1, p. 1, 2007.
[128] A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J.Opt. A Pure Appl. Opt., vol. 5, no. 4, p. S16, 2003.
[129] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep., vol. 408, no. 3–4, pp. 131 – 314, 2005.
[130] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors Actuat. B Chem., vol. 54, no. 1–2, pp. 3 – 15, 1999.
[131] J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev., vol. 108, no. 2, pp. 462–493, 2008.
[132] D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys., vol. 57, no. 10, p. 989, 1994.
[133] E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science, vol. 257, no. 5067, pp. 189–195, 1992.
[134] M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photon., vol. 6, no. 11, pp. 737–748, 2012.
[135] H. C. Zhang, Y. Fan, J. Guo, X. Fu, and T. J. Cui, “Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials,” ACS Photonics, vol. 3, no. 1, pp. 139–146, 2016.
[136] L. Novotny and B. Hecht, Principles of nano-optics. 2006.
[137] J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D. Appl. Phys., vol. 45, no. 11, p. 113001, 2012.
[138] C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: Surface plasmons,” Phys. Rev. B, vol. 10, pp. 3038–3051, 1974.
[139] Y. Deng and G. Liu, “Surface plasmons resonance detection based on the attenuated total reflection geometry,” Procedia Engineering, vol. 7, pp. 432 – 435, 2010.
[140] K. M. Byun, S. J. Kim, and D. Kim, “Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic gratings,” Appl. Opt., vol. 46, no. 23, pp. 5703–5708, 2007.
[141] C. Chen and P. Berini, “Grating couplers for broadside input and output coupling of long-range surface plasmons,” Opt. Express, vol. 18, no. 8, pp. 8006–8018, 2010.
[142] DaiS., MaQ., L. K., AndersenT., FeiZ., G. D., WagnerM., WatanabeK., TaniguchiT., ThiemensM., KeilmannF., J. C. A. M., ZhuS-E., Jarillo-HerreroP., F. M., and B. N., “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nano., vol. 10, no. 8, pp. 682–686, 2015.
[143] J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett., vol. 98, no. 10, p. 101901, 2011.
[144] V. A. Markel, “Introduction to the maxwell garnett approximation: tutorial,” J. Opt. Soc. Am. A, vol. 38, no. 7, pp. 1244–1256, 2016.
[145] A. Sihvola, Electromagnetic Mixing Formulas and Applications. 1999.
[146] S. Rytov, “Electromagnetic properties of a finely stratified medium,” JETP, vol. 2, no. 3, pp. 466–475, 1956.
[147] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, pp. 181–223. Wiley-VCH Verlag GmbH, 2007.
[148] R.-L. Chern, “Spatial dispersion and nonlocal effective permittivity for periodic layered metamaterials,” Opt. Express, vol. 21, no. 14, pp. 16514–16527, 2013.
[149] M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys., vol. 82, pp. 3045–3067, 2010.
[150] J. E. Moore, “The birth of topological insulators,” Nature, vol. 464, no. 7286, pp. 194–198, 2010.
[151] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, “Quantum spin hall effect and topological phase transition in hgte quantum wells,” Science, vol. 314, no. 5806, pp. 1757–1761, 2006.
[152] S. Raghu and F. D. M. Haldane, “Analogs of quantum-hall-effect edge states in photonic crystals,” Phys. Rev. A, vol. 78, p. 033834, 2008.
[153] A. R. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: Evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett., vol. 111, p. 257401, 2013.
[154] A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater., vol. 12, no. 3, pp. 233–239, 2013.
[155] W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett., vol. 114, p. 037402, 2015.
[156] K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photon., vol. 6, no. 11, pp. 782–787, 2012.
[157] M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface impedance and bulk band geometric phases in one-dimensional systems,” Phys. Rev. X, vol. 4, p. 021017, 2014.
[158] J. Zak, “Berry’s phase for energy bands in solids,” Phys. Rev. Lett., vol. 62, pp. 2747–2750, 1989.
[159] M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, and I. Bloch, “Direct measurement of the zak phase in topological bloch bands,” Nat. Phys., vol. 9, no. 12, pp. 795–800, 2013.
[160] A. Archambault, F. m. c. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B, vol. 82, p. 035411, 2010.
[161] L. Landau and E. Lifshitz, Electrodynamics of Continuous Media, vol. 8 of Course of Theoretical Physics, pp. 290 – 330. Amsterdam: Pergamon, second edition revised and enlarged ed., 1984.
[162] A. Raman and S. Fan, “Photonic band structure of dispersive metamaterials formulated as a hermitian eigenvalue problem,” Phys. Rev. Lett., vol. 104, p. 087401, 2010.
[163] W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in polyacetylene,” Phys. Rev. Lett., vol. 42, pp. 1698–1701, 1979.
[164] V. L. Ginzburg and . Tsytovich, V. N., Transition radiation and transition scattering. Bristol, Eng. ; New York, NY : A. Hilger, 1990.
[165] V. L. Ginzburg, “Transition radiation and transition scattering,” Physica Scripta, vol. 1982, no. T2A, p. 182, 1982.
[166] F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys., vol. 82, pp. 209–275, Feb 2010.
[167] B. M. Bolotovskii, “Vavilov – cherenkov radiation: its discovery and application,” Physics-Uspekhi, vol. 52, no. 11, p. 1099, 2009.