簡易檢索 / 詳目顯示

研究生: 呂潔峰
Lu, Jie Feng
論文名稱: 水熱法合成及成長Hematite-還原至Magnetite的動力學探討及其鋰電池應用
Hydrothermal Growth of Hematite Particles-Kinetic of Reduction to Magnetite and Its Application for Lithium Ion Battery
指導教授: 蔡哲正
Tsai, Cho Jen
口試委員: 廖建能
鄭如忠
顏光甫
甘炯耀
蔡哲正
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 69
中文關鍵詞: 水熱法相變化鋰電池
外文關鍵詞: hydrothermal, phase transformation, lithium ion battery
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從三氧化二鐵相還原至四氧化三鐵相的相變化可經由水熱法製程在添加KOH及EDA的含鐵離子溶液中並加熱至180-220oC的條件下而產生。這個反應首先形成六角片狀的α-Fe2O3 粒子,隨著反應時間增加,六角片狀的α-Fe2O3 粒子開使溶解而釋放出Fe3+離子 而Fe3+ 離子還原至Fe2+離子也同時進行著, 然後Fe3O4多面體粒子開始成核成長。從三氧化二鐵相還原至四氧化三鐵相的相變化活化能為96.411, 113.15, and 118.311 kJ/mol ; 這是在水熱法製程下分別添加0.5、1 和 1.5 ml EDA的條件下獲得,而這樣的值與在氫氣氛圍條件下從三氧化二鐵相還原至四氧化三鐵相的相變化所得的值是相近的。
    在水熱法製程裡於含鐵溶液中依照不同的水與EDA溶積比並加熱至180OC的條件下可生成不規則多面體、雙六角錐、拉長雙錐體、斜方六面體的α-Fe2O3 奈米粒子。以這些不同形狀當電極材料的鋰電池,經由電化學量測可知以雙六角錐α-Fe2O3 奈米粒子當電極的電池有最好的電容量以及變速率偱環壽命表現。此結果顯示除了粒子的尺寸以外,粒子的形狀並其上的面是另一個影响電池在電化學量測表現上的重要因素。


    Phase transform of α-Fe2O3 to Fe3O4 were observed by hydrothermal treatment of ferric solution at 160-220 oC with the addition of both KOH and EDA into the reaction system. The reactions began with the formation of α-Fe2O3 hexagonal plates followed by the phase transformation involving dissolution of the α-Fe2O3 hexagonal platelets, the reduction of Fe3+ to Fe2+, and the nucleation and growth of new Fe3O4 polyhedral particles. The activation energies for the phase transformation of α-Fe2O3 to Fe3O4 in hydrothermal condition are estimated to be 96.411, 113.15, and 118.311 kJ/mol for the case of addition of 0.5, 1 and 1.5 ml of EDA, respectively, which are about the same for typical phase transformation of α-Fe2O3 to Fe3O4 in hydrogen ambient. Hematite (α-Fe2O3) nanoparticles with irregular polyhedron, hexagonal bipyramid, elongated bipyramid, and rhombohedron shapes were prepared by hydrothermal treatment of ferric solution at 180 oC with the addition of different amount of water to EDA ratio in the reaction systems. The electrochemical measurements of these different particle shapes as materials for lithium ion battery showed that the best performance both in specific capacity and rate capacity were observed to be the shape of hexagonal bipyramid. The results show that, beside the size of the particles, the shape of the particles which is confined with specific surfaces is another important factor that dictates the electrochemical performance of α-Fe2O3.

    Abstract I Acknowledgement III Content IV Chapter 1 Introduction 1 1-1 The properties of iron oxides 1 1-1.1 Iron Oxides 1 1-1.2 α-Fe2O3 2 1-1.3 Fe3O4 3 1-2 Hydrothermal Methods for Growth of α-Fe2O3 and Fe3O4 Nanostructure 5 1-3 Phase transformation from α-Fe2O3 to Fe3O4 5 1-3.1 Non-redox transformations between magnetite and hematite 5 1-3.2 Phase transformation induced by thermal annealing under hydrogen ambient 6 1-3.3 Reducing agents induce phase transformation 7 1-3.4 Mechanochemical reaction induce phase transformation 7 1-4 Lithium ion battery 7 1-4.1 Background 7 1-4.2 Lithiation/delithiation mechanism 9 1-4.2.1 Intercalation 10 1-4.2.2 Alloying 10 1-4.2.3 Conversion 11 1-4.3 Fe2O3 as an anode electrode 11 1-5 Motivation 12 Chapter 2 Experimental Procedures 14 2-1 Hydrothermal Synthesis of Iron Oxides Micro/Nanoparticles 14 2-2 Preparation of α-Fe2O3 anode material electrode 18 2-3 Scanning Electron Microscope Observation (SEM) 20 2-4 X-ray Diffraction Analysis (XRD) 20 2-5 Transmission Electron Microscope Observation (TEM) 20 2-6 Vibrating sample magnetometer (VSM) 21 2-7 Electrochemical characterization 21 Chapter 3 Results and Discussion 22 3-1 Synthesize of Hematite and Magnetite 22 3-1.1 Phase transformation of iron oxides 24 3-1.2 The role of K+ ions and NO3- ions 30 3-1.3 The role of pH values 33 3-1.4 Reduction kinetics of Hematite to Magnetite 37 3-1.5 The magnetic properties of iron oxide particles 43 3-2 -Fe2O3 particles as anode materials for lithium ion battery 45 3-2.1 Synthesize of various shape of -Fe2O3 nanoparticles 45 3-2.2 Shapes Dependence of the Electrochemical Properties of α-Fe2O3 Particles as Anode Materials for Lithium Ion Battery 52 Chapter 4 Conclusions 62 References 64

    (1) T. P. Almeida: Hydrothermal Synthesis and Characterisation of α-Fe2O3 Nanorods. A thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy.
    (2) J. –P. Jolivet, E. Tronc, C. Chaneac. C. R. Geoscience, 2006, 338, 488-497.
    (3) R. M. Cornell, U. Schwertmann. The Iron Oxides, Structure, Properties, Reactions, Occurrence and Uses, Wiley–VCH, Weinheim, Germany, 2003 pp. 664.
    (4) J. –P. Jolivet. Metal Oxide Chemistry and Synthesis. From Solution to Solid State, Wiley, Chichester, 2000, pp. 321.
    (5) E. Matijevic. Colloid science of ceramic powders, Pure and Applied Chemistry, 1988, 60, 1479-1491.
    (6) F. L. Souza, K. P. Lopes, E. Longo, and E.R.Leite. Phys. Chem. Chem. Phys. 2009, 11, 1215–1219.
    (7) S.M. Reda. Materials Science in semiconductor Processing. 2010, 13,417-425.
    (8) K. Sivula, F. L. Formal, and M.Gratzel. ChemSusChem 2011, 4, 432 – 449
    (9) Y. Wang, J. Cao, S. Wang, X. Guo, J. Zhang, H. Xia,S. Zhang, and S. Wu. J. Phys. Chem. C. 2008, 112, 17804–17808.
    (10) P. C. Wu, W. S. Wang, Y. T. Huang, H. S. Sheu, Y. W. Lo, T. L. Tsai, D. B. Shieh, and C. S. Yeh. Chem. Eur. J. 2007, 13, 3878 – 3885.
    (11) Y. Zou, J. Kan, and Y. Wang. J. Phys. Chem. C. 2011, 115, 20747–20753.
    (12) F. Z. Dong, D. S. Ling, J. J. Chun, G. Y. Zheng, P. Y. Li, and H. Y. Chun. J. Am. Chem. Soc. 2005, 127, 13492-13493.
    (13) S. Zhang, X. Chen, C. Gu, Y. Zhang, J. Xu, Z. Bian, D. Yang, and N. Gu. Nanoscale Res Lett. 2009, 4, 70–77.
    (14) M. Kallumadil, M Tada, T Nakagawa, M Abe, P Southern, and Q.A. Pankhurst. Journal of Magnetism and Magnetic Materials. 2009, 321, 1509–1513.
    (15) D. Thapa, V.R. Palkar, M.B. Kurup, and S.K. Malik. Materials Letters 2004, 58, 2692– 2694.
    (16) D. Zhang, Z. Liu, S. Han, C. Li, B. Lei, M. P. Stewart, J. M. Tour, and C. Zhou. Nano Lett. 2004, 4, 2151-2155.
    (17) M. K.Yu, Y. Y. Jeong, J. Park, S. Park, J.W. Kim, J. J. Min, K. Kim, and S. Jon. Angew. Chem. Int. Ed. 2008, 47, 5362 –5365.
    (18) H. Zeng, J. Li, J. P. Liu, Z. L. Wang, and S. Sun. Nature. 2002, 420, 395-398.
    (19) L. Wang, H.W. Xu, P.C. Chen, D.W. Zhang, C.X. Ding, C.H. Chen. Journal of Power Sources. 2009, 193, 846–850.
    (20) B. Samira, K. G. Chandrappa and B. A. H. Sharifah. Res. J. Chem. Sci. 2013, 3, 62-68.
    (21) O.M. Lemine, K. Omri, B. Zhang, L. El Mir, M. Sajieddine, A. Alyamani, M. Bououdina. Superlattices and Microstructures. 2012,52, 793–799.
    (22) H. G. Cha, C. W. Kim, Y. H. Kim, M. H. Jung, E. S. Ji, B. K. Das, J. C. Kim, Y. S. Kang. Thin Solid Films. 2009,517, 1853–1856.
    (23) H. Ni, Y. Ni, Y. Zhou, J. Hong. Materials Letters. 2012,73, 206–208.
    (24) R.Y. Hong, T.T. Pan, H.Z. Li. Journal of Magnetism and Magnetic Materials. 2006,303, 60–68.
    (25) E. Liu, H. Zhao, H. Li, G. Li, Y. Liu and R. Chen. New J. Chem., 2014,38, 2911-2916.
    (26) Z. J. Zhang, X. Y. Chen, B. N. Wang, C. W. Shi. Journal of Crystal Growth. 2008,310, 5453–5457.
    (27) A. G. Nasibulin, S. Rackauskas, H. Jiang, Y. Tian, P. R. Mudimela, S. D. Shandakov, L. I. Nasibulina, J. Sainio, and E. I. Kauppinen. Nano Res. 2009, 2, 373 -379.
    (28) R. Ramesh, K. Ashok1, G. M. Bhalero, S. Ponnusamy, and C. Muthamizhchelvan. Cryst. Res. Technol. 2010, 45, 965 – 968.
    (29) Z. Zhang, Md. F. Hossain, and T. Takahashi. Applied Catalysis B: Environmental. 2010, 95, 423–429.
    (30) X. Hu, J. C. Yu, J. Gong, Q. Li, and G. Li. Adv. Mater. 2007, 19, 2324–2329.
    (31) D. Chen, and L. Gao. Chemical Physics Letters 2004, 395, 316–320.
    (32) W. Qin, C. Yang, R. Yi, and G. Gao. Journal of Nanomaterials 2011, Article ID 159259, 5pp.
    (33) G. Liu, Q. Deng, H. Wang, D. H. L. Ng, M. Kong, W. Cai, and G. Wang. J. Mater. Chem. 2012, 22, 9704–9713.
    (34) D. Nishino, A. Nakafuji, J.M. Yang, and D. Shindo. ISIJ International. 1998, 38, 1369–1374.
    (35) D. Peng, S. Beysen, Q. Li, Y. Sun, and L. Yang. Particuology.2010, 8, 386–389.
    (36) W. Yu, T. Zhang, J. Zhang, X. Qiao, L. Yang, and Y. Liu. Materials Letters. 2006, 60, 2998–3001.
    (37) Z. Li, M. Kawashita, N. Araki, M. Mitsumori, M. Hiraoka and M. Doi. Journal of biomaterials applications. 2011, 25, 643-661.
    (38) S. Mitra, S. Das, K. Mandal,and S. Chaudhuri. Nanotechnology 2007, 18 275608 (9 pp).
    (39) J. Wan, X. Chen, Z. Wang, X. Yang, and Y. Qian. Journal of Crystal Growth 2005, 276, 571–576.
    (40) H. Ohmoto. Econ. Geol. 2003, 98, 157–161.
    (41) T. Otake, D. J. Wesolowski, L. M. Anovitz, L. F. Allard, H. Ohmoto. Earth and Planetary Science Letters.2007, 257, 60–70.
    (42) R. P. Viswanath, B. Viswanathan, and M. V. C. Sastri. Thermochimica Acta. 1976, 16, 240-244.
    (43) H. Y. Lin, Y. W. Chen, C. Li. Thermochimica Acta. 2003, 400, 61–67.
    (44) J. H .Wang, Z. C. Tao, Y. Yang, J. Chang, H. W. Xiang, Y.W. Li. The Chinese Journal of Process Engineering. 2007, 7, 288-292.
    (45) M. J. Tiernan, P. A. Barnes, and G. M. B. Parkes. J. Phys. Chem. B. 2001, 105, 220-228.
    (46) K. Yanagisawa and N. Yamasaki. Journal of materials science. 1991, 26, 473-478.
    (47) J. Ge, Y. Hu, M. Biasini, W. P. Beyermann, and Y. Yinty. Angew. Chem. Int. Ed. 2007, 46, 4342 –4345.
    (48) S. Qu, H. Yang, D. Ren, S. Kan, G. Zou, D. Li, and M. Li. Journal of Colloid and Interface Science. 1999, 215, 190–192.
    (49) R. S. Sapieszko, and E. Matijewic. Journal of Colloid and lnterface Science. 1980, 74, 405-422.
    (50) H. Wang, Q. He, B. Yao, G. Wen, F. Wang, Y. Xu, Y. Li, J. Li, C. Zhou, J. Wang, G. Li, L. Shan, and J. Chen. Metallurgical and Materials Transactions B, 2012, 43B, 1574-1578.
    (51) J-M. Tarascon and M. Armand: Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414, 359-367.
    (52) www.epectec.com/batteries/cell-comparison.html.
    (53) http://electronics.howstuffworks.com/everyday-tech/lithium-ion-battery1.htm
    (54) M. Rosa Palacín. Chem. Soc. Rev.2009, 38, 2565-2575.
    (55) W. Primak, and LH. Fuchs. Phys Rev. 1954, 95, 22.
    (56) A. Guerfi, S. Se´vigny, M. Lagace´, P. Hovington, K. Kinoshita, and K. Zaghib, J Power Sources. 2003, 119–121, 88–94.
    (57) A. Du Pasquier. conversion. In: A. Eftekhari (ed) Nanostructured materials in electrochemistry. Wiley-VCH, Weinheim. 2008, pp 387–408.
    (58) GG. Amatucci, F. Badway, AD. Pasquier, T. Zheng. J Electrochem Soc. 2001, 148, 930–939.
    (59) M. M. Thackeray, JB. Goodenough. 1985, Patent number: 4,504,371
    (60) T. Li, X. P. Ai, H. X. Yang. J PhysChem C. 2011, 115, 6167–6174.
    (61) D. Larcher, G. Sudant, J-B. Leriche, Y. Chabre, J-M. Tarascon. J Electrochem Soc. 2002, 149, 234–241.
    (62) M. M. Thackeray. Prog Solid State Chem 1997, 25, 1–71.
    (63) H. Li, P. Balaya, J. Maier. J Electrochem Soc. 2004 , 151, 1878–1885.
    (64) D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J-B. Leriche, J-M. Tarascon. J Electrochem Soc. 2003, 150, 133–139.
    (65) X. H. Ma, X. Y. Feng, C. Song, B. K. Zou, C. X. Ding, Y. Yu, and C. H. Chen, ElectrochimicaActa. 2013, 93, 131– 136.
    (66) J. Chen, L. Xu, W. Li, and X. Gou, Adv. Mat. 2005, 17, 582-586.
    (67) M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. SubbaRao, and B. V. R. Chowdari, Adv. Funct. Mater. 2007, 17, 2792–2799.
    (68) J. Zhang, T. Huang, Z. Liu, and A. Yu, Electrochemistry Communications. 2013, 29, 17–20.
    (69) https://www.bruker.com/tw/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/xrd-software/overview/topas.html
    (70) Y.B. Khollam, S.R. Dhage, H.S. Potdar, S.B. Deshpande, P.P. Bakare, S.D. Kulkarni, and S.K. Date. Mater. Lett. 2002, 56, 571-577.
    (71) L. Slavov, M. V. Abrashev, T. Merodiiska, Ch. Gelev, R. E. Vandenberghe, I. Markova-Deneva, and I. Nedkovt. J. Magn. Magn. Mater. 2010, 322, 1904-1911.
    (72) D. L. A. de Faria, S. Venancio Silva and M. T. de Oliveira. JOURNAL OF RAMAN SPECTROSCOPY. 1997, 28, 873-878.
    (73) H. Monika. Geophys. J. Int. 2009, 177, 941–948.
    (74) B. Lv , Z. Liu , H. Tian , Y. Xu , D. Wu , and Y. Sun. Adv. Funct. Mater. 2010, 20, 3987–3996.
    (75) W. Zhang, L. Gai, Z. Li, H. Jiang, and W. Ma. J. Phys. D: Appl. Phys. 2008, 41, 225001-225007.
    (76) Z. Liu, B. Lv, D. Wu, and Y. Sun, Particuology. 2012, 10, 456– 461.
    (77) D. Larcher, D. Bonnin, R. Cortes, I. Rivals, L. Personnaz, and J.-M. Tarascon, J. Electrochem. Soc, 2003, 150, A1643–A1650.
    (78) Y. M Lin, P. R. Abel, A. Heller, and C. B. Mullins, J. Phys. Chem. Lett. 2011, 2, 2885–2891.
    (79) B. Sun, J. Horvat, H. S. Kim, W. S. Kim, J. Ahn, and G. Wang, J. Phys. Chem. C 2010, 114, 18753–18761.
    (80) P. S. Veluri and S. Mitra, RSC Adv. 2013, 3, 15132–15138.
    (81) R. D. Palumbo and E. A. Fletcher, Energy, 1988, 13, 319–332.
    (82) Y. H. Huang, F.M Wang, T. T. Huang, J. M. Chen, B. J. Hwang, J. Rick, Int. J. Electrochem. Sci. 2012, 7, 1205 – 1213.
    (83) T. R. Penki, S. Shivakumara, M. Minakshi, N. Munichandraiah, Electrochimica Acta 167 (2015) 330–339.
    (84) B. Tian, J. Światowska, V. Maurice, C. Pereira-Nabais, A. Seyeux, and Philippe Marcus, J. Phys. Chem. C 2015, 119, 919−925.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE