簡易檢索 / 詳目顯示

研究生: 黃蔚荏
論文名稱: 沉浸邊界法用於昆蟲飛行之數值分析
Numerical Simulations for Insect Flight with the Immersed Boundary Method
指導教授: 林昭安
Chao-An Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 英文
論文頁數: 56
中文關鍵詞: 沉浸邊界法昆蟲飛行非慣性座標雷諾數相位角
外文關鍵詞: immersed boundary method, insect flight, non-inertial coordinate system, Reynolds number, phase angle
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用沉浸邊界法來模擬昆蟲在非定常狀態下的飛行情形。使用沉浸邊界法之優點就是可以簡單的在卡氏座標中計算及表現複雜幾何外型的物體。文中會討論升力和阻力的生成機制,及詳細探討渦度場對於時間的變化,並討論兩個不同的座標系統(慣性座標系和非慣性座標系)相互之關係,最後與王[13]作一個比較及討論。而結果顯示非慣性座標下的結果比慣性座標的精確度要高。
    接下來討論雷諾數及相位角的變化對升力和阻力所產生的影響,結果發現當雷諾數小於78.5時,昆蟲無法產生足夠的升力來支撐它的飛行,而當雷諾數增加,升力及阻力也會隨著增加;在相位角的變化中,討論三個不同的相位角,在延遲旋轉中,昆蟲無法產生足夠的升力來提供飛行所需的能量,而預先旋轉所產生的升力,卻比稱旋轉還大了百分之四十左右。


    Abstract
    This thesis reports the simulations of insect flight using the immersed boundary. The major advantage of the IBM is that the computations can be performed within the Cartesian framework to mimic the complex geometry of the insect wing. Both the inertial and non-inertial coordinate systems are adopted in the computations and the predicted lift and drag coefficients are examined. In comparisons with the benchmark solutions of Wang, the non-inertial frame simulation was observed to produce more accurate results than those generated by the inertial frame. When examining the predicted vorticity fields, the wake capture and delayed stall phenomena were captured by the present predictions
    The influences of the Reynolds number and the phase differences on the lift and drag were also examined. The ranges of the Reynolds numbers investigated are from 78.5 to 314. It was shown that the insect can not generate enough lift force to support its flight when the Reynolds number was smaller than 78.5. The lift and drag were also shown to increase in tandem with the Reynolds number. The computations of the variations of the phase angles, , and , show that the delayed rotation produces the negative lift force. On the other hand, both the lift and drag forces generated by the advanced rotation are approximately 40% higher than those generated by the symmetric rotation.

    Chapter1 Introduction 1-1 Introduction …………………………………………………………….. 1-2 Unsteady Mechanism in Insect Flight …………………………...….. 1-2-1 Clap-and-Fling …….…………………………………………….. 1-2-2 Delayed stall ……………………………………………….……. 1-2-3 Rotational circulation ………………………………………....... 1-2-4 Wake capture ……………………………….…………………… 1-3 Literature Survey ……………………………………………………… 1-4 Objectives and Motivations …………………………………………... Chapter2 Mathematical Formulations 2-1 Inertial Coordinate System …………………………………………… 2-2 Non-inertial Coordinate System ……………………………………... 2-2-1 Derivation of the momentum equation ……………………….. 2-2-2 Momentum equation with immersed boundary method ……. 2-3 Dirac Delta Function ………………………………………………….. 2-4 Motion of the Wing ……………………………………………………. 2-4-1 Translation ………………………………………………………. 2-4-2 Rotation ………………………………………………………….. 2-4-3 Motion in non-inertial coordinate system …………………….. Chapter3 Numerical Methods 3-1 Discretization of the transport equations …………………………… 3-2 The Four Steps Fractional Step Method ……………………………. 3-3 The Boundary Force Derivation ……………………………………... 3-4 The Full Solution Procedure …………………………………………. Chapter4 Results and Discussions 4-1 Lift and Drag Force ……………………………………………………. 4-1-1 Inertial coordinate system ……………………………………… 4-1-2 Non-inertial coordinate system ………………………………... 4-2 The Vorticity Field ……………………………………………………… 4-3 Influences of Reynolds Number …..…………………………………. 4-4 Phase Difference ……………………………………………………… Chapter5 Conclusion and Future Work 5-1 Conclusion ……………………………………………………………... 5-2 Future Work …………………………………………………………….

    [1.] Weis-Fogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 59, 169-230
    [2.] Lighthill, M. (1973). On Weis-Fogh mechanism of lift generation. J. Fluid Mech. 60, 1-17.
    [3.] Maxworthy, T. (1979). Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’. J. Fluid Mech. 93, 47-63.
    [4.] Sane, S. P. (2003). The aerodynamics of insect flight. J. Exp. Biol. 206, 4191-4208
    [5.] Ellington, C. P., Vanden Berg, C., Willmott, A. P. and Thomas, A. L. R. (1996). Leading-edge vortices in insect flight. Nature 384, 626-630
    [6.] Dickinson, M. H., Lehmann, F.-O. and Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954-1960.
    [7.] Dickinson, M. (2001). Solving the mystery of insect flight- Insects use a combination of aerodynamic effects to remain aloft. Sci. American 284 (6) 48-57
    [8.] Savage, S. B., Newman, B.G. and Wong, D. T.-M. (1979). The role of vortices and unsteady effects during the hovering flight of dragonflies. J. Exp. Biol. 83, 59-77
    [9.] Norberg, R. (1975). Hovering flight of the dragonfly, Aeschna juncea L., kinematics and aerodynamics. In Swimming and Flying in Nature, vol. 2 (ed. T. Wu, C. Brokaw and C. Brennen), pp. 763-781. New York: Plenum Press
    [10.] Liu, H., Ellington, C. P., Kawachi, K., Van Den Berg, C. and Willmott, A. P. (1998). A computational fluid dynamic study of hawkmoth hovering. J. Exp. Biol. 201, 461–477.
    [11.] Sun, M. and Tang, J. (2002). Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. Exp. Biol. 205, 55-70.
    [12.] Ramamurti, R. and Sandberg, W. C. (2002). A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J. Exp. Biol. 205, 1507-1518.
    [13.] Wang, Z. J. (2000). Two dimensional mechanism for insect hovering. Phys. Rev. Lett. 85, 2216-2219
    [14.] Wang, Z.J., Birch, J.M. and Dickinson, M.H. (2004). Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. J. Exp. Biol. 207, 449-460
    [15.] Miller, L. A. and Peskin, C. S. (2004). When vortices stick : an aerodynamic transition in tiny insect flight. J. Exp. Biol. 207, 3073-3088
    [16.] Harlow, F. H. and Welsh, J. E. (1965). Numerical calculation of time -dependent viscous incompressible flow of fluid with a free surface. Phys. Fluids, 8, 2181-2189.
    [17.] Saiki, E. M. and Biringen, S. (1996). Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method, J. Comp. Phys. 123, 450
    [18.] Choi, H. and Moin, P. (1993). Effects of the Computational Time Step on Numerical Solutions of turbulent flow. J. Comp. Phys. 113, 1.
    [19.] Van den Vorst, H. A. and Sonneveld, P. (1990). CGSTAB, a more smoothly converging variant of CGS, Technical Report 90-50, Delft University of Technology
    [20.] Robert Dudley (2000). The biomechanics of insect flight, form, function, evolution. Princeton University Press.
    [21.] Baranyi, L. (2005). Lift and drag evaluation in translating and rotating non-inertial systems. J. Fluids and Structures 20, 25-34

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE