研究生: |
楊宇宸 Yang, Yu-Chen |
---|---|
論文名稱: |
可調控式隨機雷射之研究 Study of Tunable Random Lasers |
指導教授: |
洪毓玨
Hung, Yu-Chueh |
口試委員: |
李明昌
Ming-Chang Lee 林凡異 Fan-Yi Lin |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 隨機雷射 、去氧核醣核酸 、介電泳 |
外文關鍵詞: | Random laser, DNA, Dielectrophoresis |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在隨機雷射領域中,如何控制雷射光譜一直是學者們所想要達到的目標,藉由控制隨機雷射可以使我們達到更多的應用與發展。本研究中,我們利用兩種不同的機制來控制隨機雷射。
第一個機制是利用光來控制隨機雷射的行為。我們以具有特殊雙股螺旋結構的去氧核糖核酸(deoxyribonucleic acid,DNA)分子材料,作為銀奈米晶種的生長模板,並運用光還原法,來生成散射介質,也就是銀奈米粒子。我們透過光還原時間的不同來改變銀奈米粒子的大小、形狀及數量,進而改變隨機雷射的特性,並分析激發能量門檻值,放射波長以及振幅傅利葉變換(power Fourier transform)在不同還原時間下的結果。
第二個機制是利用電場的方式來控制隨機雷射。我們會在設計好的平行板結構間隙中,加入含有聚苯乙烯(polystyrene)粒子及雷射染料Rh6G(rhodamine 6G)的溶液,再施加不同大小電場,利用介電泳力的原理,來影響聚苯乙烯粒子的分佈,藉由粒子分佈的不同來影響其隨機雷射光譜模態,同樣的,我們也利用平均自由路徑以及振幅傅利葉變換(power Fourier transform)來分析隨機雷射的行為與外加電場的關係。
Controlling random laser is tone of the important topics in this field, which may lead to more applications and developments. In this work, we demonstrate the control of random laser by two different mechanisms.
The first mechanism to control the performance of random laser via an optical route. We use a photoreduction method to synthesize silver nanoparticles(NPs) in biopolymer based on deoxyribonucleic acid, which is used as a growing template. The photoreduction time can change the size, shape and number of NPs, and consequently the performance of random laser is changed by optically-controlled scatterers. The pumping energy threshold, emission wavelength and power Fourier transform are analyzed to evaluate the tunability of random lasers with respect to photoreduction time.
The second mechanism is that we utilized electric field to control random laser. We design a structure of parallel plates and add solution mix polystyrene particles and Rh6G(rhodamine 6G)laser dye into gap of parallel plates. Then, different magnitude of electric field is applied to influence the distribution of polystyrene particles based on dielectrophoresis effect. The random lasing modes are changed because of different distribution of polystyrene particles. The mean free path and power Fourier transform of random laser spectra are analyzed to evaluate how the random laser can be controlled by an applied electric field.
[1] G. R. Gordon, “Light amplification by stimulated emission of radiation,” In Franken, P.A. and Sands, R.H. (Eds.). The Ann Arbor Conference on Optical Pumping, the University of Michigan, pp. 128, 1959.
[2] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 4736, pp. 493–494, 1960.
[3] A. Einstein, “Strahlungs-emission und-absorption nach der quantentheorie,” Verhandlungen der Deutschen Physikalischen Gesellschaft 18, pp. 318–323, 1916.
[4] V. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, pp. 835, 1968.
[5] N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, pp. 436 - 438, 1994.
[6] H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, pp. 2278, 1999.
[7] H. C. Van de Hulst and H. Christoffel, “Light scattering by small particles,” Wiley, New York, NY, 1957.
[8] C. Wang and J. Liu, “Polarization dependence of lasing modes in two-dimensional random lasers,” Appl. Phys. Lett. A 353 , pp. 269–272, 2006.
[9] X. H. Wu, A. Yamilov, H. Noh and H. Cao, “Random lasing in closely packed resonant scatterers,” J. Opt. Soc. Am. B 21(1), 2004.
[10] D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, pp. 359 - 367, 2008.
[11] P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, pp. 1492, 1958.
[12] D. S. Wiersma, P. Bartolini, A. Lagendijk and R. Righini, “Localization of light in a disordered medium,” Nature 390, pp. 671-673, 1997.
[13] P. Sheng, “Introduction to wave scattering, localization and mesoscopic phenomena,” Springer Series in Material Science 88, 2006.
[14] C. Vanneste, P. Sebbah and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98, 1439020, 2007.
[15] S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93 , 053903, 2004.
[16] R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205, 2005.
[17] A. Yamilov, X. Wu, H. Cao and A. L. Burin, “Absorption-induced confinement of lasing modes in diffusive random media,” Opt. Lett. 30, 2430, 2005.
[18] H. Cao, J. Y. Xu, E. W. Seelig and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76 (22), 2000.
[19] V. S. Letokhov and S. K. Sekatskii, “Cavityless powder lasers pumped by field-emissioncathodes as a new class of monochromatic spatially incoherent radiation sources,” Quantum Electron 32 (11), pp. 1007–1008, 2002.
[20] R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, p. 1289, 2004.
[21] H. Cao, “Random lasers: development, features and applications,” Opt. Photon. News 16(1), pp. 24-29, 2005.
[22] S. Larochelle, P. Mathieu, V. Larochelle and J. Dubois, “Long range interrogation of laser paints for identification applications,” In Conference on Lasers and Electro-Optics 11, pp. 143, 1997.
[23] D. S. Wiersma and S. Cavalierit, “A temperature-tunable random laser,” Nature 414, pp. 708–709, 2001.
[24] S. C. Rand, “Bright storage of light,” Opt. Photon. News 14(5), pp. 32–37, 2004.
[25] G. Williams, B. Bayram, S. C. Rand, T. Hinklin and R.M. Laine, “Laser action in strongly scattering rare-earth-doped dielecric nanophosphors,” Phys. Rev. A 65, 013807, 2001.
[26] T. Nakamura, B. P. Tiwari and S. Adachi, “Control of random lasing in ZnO/Al2O3 nanopowders,” Appl. Phys. Lett. 99, 231105, 2011.
[27] C. R. Lee, J. D. Lin, B. Y. Huang, T. S. Mo and S. Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18(25), 2010.
[28] L. Ye, B. Liu, C. Zhao, Y. Wang, Y. Cui and Y. Lu, “The electrically and magnetically controllable random laser from dye-doped liquid,” J. Appl. Phys. 116, 053103, 2014.
[29] B. N. S. Bhaktha, N. Bachelard, X. Noblin and P. Sebbah, “Optofluidic random laser,” Appl. Phys. Lett. 101, 151101, 2012.
[30] J. D. Watson and F. H. C. Crick, “Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid,” Nature 171, pp. 737 - 738, 1953.
[31] Retrieved from http://www.slideshare.net/RMaster/cidos-nuclicos-33060445.
[32] Retrieved from http://www.bunbunhk.com/BBS/Discuz/archiver/?tid-15523.html.
[33] Y. Kawabe, L. Wang, S. Horinouchi and N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA-surfactant complex films,” Adv. Mater. 12, pp. 1281-1283, 2000.
[34] J. A. Hagen, W. Li, A. J. Steck and J. G. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109, 2006.
[35] P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwodiauer, S. Bauer, H. Piglmayer-Brezina, D. Bauerle and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Org. Electron. 8, pp. 648-654, 2007.
[36] Y. C. Hung, W. T. Hsu, T. Y. Lin and L. Fruk, “Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite,” Appl. Phys. Lett. 99, 253301, 2011.
[37] G. Subramanyam, E. Heckman, J. Grote and F. Hopkins, “Microwave dielectric properties of DNA based polymers between 10 and 30 GHz,” IEEE Microw. Wirel. Compon. Lett. 15, pp. 232-234, 2005.
[38] Y. Ner, J. G. Grote, J. A. Stuart and G. A. Sotzing, “Enhanced fluorescence in electrospun dye-doped DNA nanofibers,” Soft Matter 4, pp. 1448-1453, 2008.
[39] A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc and J. G. Grote, “Deoxyribonucleic acid-based photochromic material for fast dynamic holography,” Appl. Phys. Lett. 91, 041118, 2007.
[40] J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K. Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), pp. 8584-8591, 2004.
[41] Y. Kawabe, L. Wang, S. Horinouchi and N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA–surfactant complex films,” Adv. Mater. 12 (17), pp. 1281–1283, 2000.
[42] X. Liu, H. Diao and N. Nishi, “Applied chemistry of natural DNA,” Chem. Soc. Rev. 37, pp. 2745-2757, 2008.
[43] Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote and A. J. Steckl, “Potoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46(9), pp. 1507-1513, 2007.
[44] S. Xu, Y. Cao, J. Zhou, X. Wang, X. Wang And W. Xu, “Plasmonic enhancement of fluorescence on silver nanoparticle films,” Nanotechnology 22, 275715, 2011.
[45] C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127, 3115, 2005.
[46] J. T. Petty, J. Zheng, N. V. Hud and R. M. Dickson, “DNA-templated Ag nanocluster formation,” J. Am. Chem. Soc. 126, pp. 5207-5212, 2004.
[47] V. Zon, G. Burley and U. Rant, “Photo-induced growth of DNA-capped silver nanoparticles,” Nanotechnology 23, 115607, 2012.
[48] G. Shemer, O. Krichevski, G. Markovich, T. Molotsky, I. Lubitz and A. B. Kotlyar, “Chirality of silver nanoparticles synthesized on DNA,” J. Am. Chem. So. 128(34), 11007, 2006.
[49] L. Polavarapu and Q. H. Xu, “Water-soluble conjugatedn polymer-induced self-assembly of gold nanoparticles and its application to SERS,” Langmuir 24, pp. 10608-10611, 2008.
[50] R. L. Wu, C. H. Kuo and M. H. Huang, “Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures,” Langmuir 26(14), pp. 12307-12313, 2010.
[51] M. T. Reetz and W. Helbig, “Size-selective synthesis of nanostructured transition metal clusters,” J. Am. Chem. Soc. 116, 7401, 1994.
[52] L. C. Courrol, F. R. de Oliveira Silva, L. Gomesc, “A simple method to synthesize silver nanoparticles by photo-reduction” Physicochem. Eng. 305, pp. 54-57, 2007.
[53] K. L. Mcgilvray, M. R. Decan, D. Wang and J. C. Scaiano, “Facile photochemical synthesis of unprotected aqueous gold nanoparticles,” J. Am. Chem. Soc. 128, pp. 15980-15981, 2006.
[54] S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim and T. D. Wilkinson, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 , 2012.
[55] Q. Song, L. Liu, L. Xu, Y. Wu and Z. Wang, “Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity,” Opt. Express 34(3), 2009.
[56] V. B. Zon, G. A. Burley and U. Rant, “Photo-induced growth of DNA-capped silver nanoparticles,” Nanotechnology 23, 115607, 2012.
[57] D. Hofstetter and R. L. Thornton, “Measurement of optical cavity properties in semiconductor lasers by fourier analysis of the emission spectrum,” IEEE J. Quantum Electron 34 (10), p. 1998.
[58] L. Sznitko, K. Cyprych, A. Szukalski, A. Miniewicz and J. Mysliwiec, “Coherent–incoherent random lasing based on nano-rubbing induced cavities,” Laser Phys. Lett. 11, 045801, p. 2014.
[59] R. C. Polson, G. Levina and Z. V. Vardeny, “Spectral analysis of polymer microring lasers,” Appl. Phys. Lett. 76, 3858, 2000.
[60] L. Sznitko, A. Szukalski, K. Cyprych, P. Karpinski, A. Miniewicz and J. Mysliwiec, “Surface roughness induced random lasing in bio-polymeric dye doped film,” Chem. Phys. Lett. 576, pp. 31-34, 2013.
[61] M. Tomita, H. Ikari,“Influence of finite coherence length of incoming light on enhanced backscattering,” Phys. Rev. B 43(4), 1991.
[62] S. Z. Fan, X. Y. Zhang, Q. P. Wang, C. Zhang, Z. P. Wang and R. J. Lan, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers,” J. Phys. D: Appl. Phys. 42, 015105, 2009.
[63] H. Cao, Y. Ling, J. Y. Xu and A. L. Burin, “Probing localized states with spectrally resolved speckle techniques,” Phys. Rev. E 66, 025601(R), 2002.
[64] M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86, pp. 455–460, 2007.
[65] B. C. Gierhart, D. G. Howitt, S. J. Chen and R. L. Smith, “Frequency dependence of gold nanoparticle superassembly by dielectrophoresis,” Langmuir 23, pp. 12450-12456, 2007.
[66] C. T. Dominguez, R. L. Maltez, R. M. S. dos Reis, L. S. A. de Melo, C. B. de Araújo and A. S. L. Gomes, “Dependence of random laser emission on silver nanoparticle density in PMMA films containing rhodamine 6G,” J. Opt. Soc. Am. B 28 (5), 2011.
[67] Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808, 2001.
[68] A. Einstein, “Über die von molekularkinetischen theorieder wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen,” Ann. Phys. 322, pp. 549–560, 1905.
[69] Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming and Q. Zhan, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901, 2012.