研究生: |
李柏辰 Lee, Po-Chen |
---|---|
論文名稱: |
六十五奈米CMOS之寬頻AB類功率放大器 A Wideband Class-AB Power Amplifier in 65nm CMOS |
指導教授: |
朱大舜
Chu, Ta-Shun |
口試委員: |
王毓駒
Wang, Yu-Jiu 吳仁銘 Wu, Jen-Ming |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 功率放大器 、脈衝 、平衡不平衡變壓器 |
外文關鍵詞: | power amplifier, impulse, balun |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文設計、模擬與分析一寬頻AB類功率放大器,並使用台積電所提供之六十五奈米CMOS製程下線,論文共分五章,前兩章說明功率放大器的應用以及相關設計理論,接著為此功率放大器的設計流程、電路模擬和結果分析,完整的電路包含射頻發射器的輸入緩衝級、功率級以及連接至輸出端的平衡-不平衡變壓器。
主要研究的寬頻AB類功率放大器將應用於短脈衝射頻發射器,兩個相位差一百八十度之時脈訊號經過時脈緩衝開關後輸出至功率放大器,此時脈訊號即為功率放大器之操作頻率,經過時脈緩衝開關後,訊號會成為寬度一奈秒、週期一百奈秒之短脈衝,而後經過功率放大器將阻抗轉換為五十歐姆的輸出阻抗,並接至天線量測。發射器電源電壓為1.0V,啟動時的功率消耗約為33mW,而功率放大器在主操作頻率7.5GHz時輸出飽和功率達9dBm以上,輸入三階截止點為13dBm,功率附加效率則為25%,可操作頻寬由3.2GHz至8.6GHz,而此頻寬定義為三分貝之正向電壓增益衰減,且輸出反射係數需小於負六分貝,另外因應計劃需求,在主操作頻率7.5GHz附近將有最低的輸出反射係數,以避免量測用之印刷電路板上形成駐波進而影響輸出結果。
In this thesis, there is a wideband class-AB power amplifier (PA) had been designed, simulated, analyzed, and taped out with TSMC 65nm CMOS technology. The thesis is organized into five chapters. The first two chapters are the applications, related parameters, and design theories of the PA. The other chapters are about the design flow, circuit simulation and results analysis. The complete circuit is a radio-frequency transmitter, which includes an input buffer stage, a power stage, and a balance to unbalance transformer to connect with the output port.
The wideband class-AB PA is applied to the impulse radio-frequency transmitter. There will be two opposite phase clock signal through the switchable clock buffer to the PA, and the frequency of the clock signal will be the operation frequency of the PA. After the signal through the buffer, it will become a 1ns impulse with 100ns period, and then the PA will increase the power of the output signal for antenna measurements. The power supply of the transmitter is 1.0V, and the power consumption is about 33mW when turn on. The main operation frequency of the PA is 7.5GHz with 9dBm saturation power, 13dBm IIP3, and 25% PAE. The operational bandwidth of the circuit is 3.2GHz to 8.6GHz. The definition of the bandwidth in this design is 3dB decrease of S21 and S22 should be smaller than -6dB to avoid the formation of standing wave on the PCB.
[1] Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits (Second Edition) , Cambridge University Press, 2004.
[2] Steve C. Cripps, RF Power Amplifiers for Wireless Communications (Second Edition) , Artech House, 2006.
[3] A. Hajimiri, “Fully Integrated RF CMOS Power Amplifiers - a Prelude to Full Radio Integration,” IEEE Radio Frequency Integrated Circuit Symp., Jun. 2005, pp. 439-442.
[4] H. Wang, C. Sideris, and A. Hajimiri, “A 5.2-to-13GHz Class-AB CMOS Power Amplifier with a 25.2dBm Peak Output Power at 21.6% PAE,” IEEE ISSCC , Feb. 2010, pp.44-45.
[5] H. Wang, C. Sideris, and A. Hajimiri, “A CMOS Broadband Power Amplifier with a Transformer-Based High-Order Output Matching Network,” IEEE J. Solid-State Circuits, vol. 45, no. 12, Dec. 2010, pp.2709–2722.
[6] B.-H. Ku, S.-H. Baek, and S. Hong, “A Wideband Transformer Coupled CMOS Power Amplifier for X-band Multifunction Chips,” IEEE Trans. Microwave Theory & Tech., vol. 59, no. 6, June 2011, pp.1599–1609.
[7] Y. Palaskas, S.S. Taylor, S. Pellerano, I. Rippke, R. Bishop, A. Ravi, H. Lakdawala, and K. Soumyanath “A 5 GHz class-AB power amplifier in 90 nm CMOS with digitally-assisted AM-PM correction,” IEEE Custom Integrated Circuits Conference, Sept. 2005, pp.813-816.
[8] I. Aoki, S.D. Kee, D.B. Rutledge, and A. Hajimiri, “Distributed Active Transformer - A New Power-Combining and Impedance - Transformation Technique,” IEEE Trans. Microwave Theory & Tech., vol. 50, no. 1, Jan. 2002, pp.316-331.
[9] D. Kang, D. Yu, K. Min, K. Han, J. Choi, D. Kim, B. Jin, M. Jun, and B. Kim “A Highly Efficient and Linear Class-AB/F Power Amplifier for Multimode Operation,” IEEE Trans. Microwave Theory & Tech. , vol. 56, no. 1, Jan. 2008, pp.77-87.
[10] John R. Long, “Monolithic Transformers for Silicon RF IC Design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, Sept. 2000, pp.1368-1382.
[11] S. H.-L. Tu and S. C.-H. Chen “A 5.25-GHz CMOS Cascode Class-AB Power Amplifier for Wireless Communication,” IEEE Electron Devices and Solid-State Circuits, Dec. 2007, pp.421-424.
[12] A.R. Belabad, N. Masoumi, amd S.J. Ashtiani, “A 33.2 dBm CMOS RF Power Amplifier Using a Novel On-Chip Transformer Power Combiner for 4G WiMAX Applications,” Sixth International Symposium on Telecommunications, Nov. 2012, pp.343-347.
[13] H.-Y. Chung, C.-W. Kuo, and H.-K. Chiou, “A Full X-Band Power Amplifier with an Integrated Guanellatype Transformer and a Pre-Distortion Linearizer in 0.18 μm CMOS,” Microwave and Optical Technology Lett., vol.55, no.9, Sep. 2013, pp. 2229–2232.
[14] Yuen Sum, Ng, L. Leung, and K.-N. Leung “A 3-GHz Fully-Integrated CMOS Class-AB Power Amplifier,” IEEE International Midwest Symposium on Circuits and Systems, Aug. 2009, pp.995-998.
[15] R. Brama, L. Larcher, A. Mazzanti, and F. Svelto “A 1.7-GHz 31dBm differential CMOS Class-E Power Amplifier with 58% PAE,” IEEE Custom Integrated Circuits Conference, Sept. 2007, pp.551-554.