簡易檢索 / 詳目顯示

研究生: 江仁豪
論文名稱: 含cbMSC/HUVEC核層細胞球體的製備、性質評估與其於血管新生之應用
指導教授: 宋信文
口試委員: 張燕
楊台鴻
黃效民
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 36
中文關鍵詞: 血管新生細胞治療細胞球體
外文關鍵詞: angiogenesis, cells therapy, cell bodies
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞治療在組織工程領域上,為一相當具有前瞻性的治療方法。曾有研究群利用注射幹細胞進行組織再生的治療,但其效果有限。原因在於收集細胞時用酵素脫附細胞的動作,會破壞細胞與細胞間的連結性,因此可能會影響後續細胞移植的治療效果。本實驗室先前已開發出細胞球體生產系統,利用細胞不會貼附在甲基纖維素水膠的特性,製備大小均一且可經由針頭注射的細胞球體。實驗結果顯示,細胞球體具有完整的細胞外間質及黏附性蛋白,注射後,嵌入肌肉間隙中並黏附於新生環境裡,而有效的留置於體內。本研究利用人類臍帶血間葉幹細胞(human cord-blood mesenchymal stem cells, cbMSC)與人類臍帶靜脈內皮細胞(human umbilical vein endothelial cells, HUVEC)在體外共同培養成3-D核層細胞球體,並探討此一核層細胞球體的增生、分佈及最佳化等特性。體外實驗部分,我們先行探討cbMSC/HUVEC核層細胞球體的形成機制,結果發現當cbMSC作為核時,才可形成核層細胞球體。另外我們藉由類血管網路形成(Tube Formation Assay)評估cbMSC/HUVEC核層細胞球體分化血管之能力及探討 cbMSC/HUVEC 細胞數比例是否會影響類血管網路形成能力。結果顯示以 cbMSC 與 HUVEC 比例1:1其類血管網路結構形成的速度及完整性是最好的。我們也分析了SMA、SM22、MYH10、VEGF、TGF-β1、Ang1-1此六種與血管形成相關的基因,除TGF-β1外,其餘五種基因的表現量隨時間增長有上升的趨勢。體內實驗部分,我們把cbMSC/HUVEC核層細胞球體與Matrigel混合,進行老鼠背部皮下注射,探討其分部、增生及是否有形成血管網路之情形。結果顯示,cbMSC/HUVEC核層細胞球體於7天後已部份分化為血管,並與宿主血管連結,證明其確實有分化為血管之能力。


    中文摘要 I 目錄 II 圖索引 IV 第一章緒論 1 1.1細胞移植治療 1 1.2細胞移植治療面臨的難題 2 1.3甲基纖維素 2 1.4甲基纖維素成膠機制 3 1.5細胞球體 5 1.6血管新生對於心肌修復 5 1.7研究動機與實驗目的 6 第二章體外實驗 9 2.1研究目的 9 2.2材料與方法 9 2.2.1細胞培養 9 2.2.2甲基纖維素水膠製備 10 2.2.3細胞球體生產系統建立 10 2.2.4核層細胞球體(Core-shell cell body)製備 11 2.2.5類血管網路形成實驗(Tube Formation Assay) 12 2.2.6免疫螢光染色 12 2.2.7 細胞取樣 13 2.2.8 即時定量連鎖聚合酶反應(Real-Time Quantitative PolymeraseChain Reaction, qPCR) 13 2.3實驗結果與討論 14 2.3.1核層細胞球體型態 14 2.3.2細胞的貼附性分析 16 2.3.3類血管網路形成實驗(Tube Formation Assay) 17 2.3.4 HUVEC和cbMSC比例最佳化 18 2.3.5核層細胞球體網狀結構完整性 20 2.3.6核層細胞球體網狀結構特性鑑定 21 2.3.7 qPCR定量分析 22 2.4結論 24 第三章體內實驗 25 3.1研究目的 25 3.2材料與方法 25 3.2.1背部皮下注射 25 3.2.2病理組織切片分析 26 3.2.3微血管數測量 27 3.2.4免疫螢光染色 28 3.3 實驗結果與討論 28 3.3.1 取樣後巨觀觀察 28 3.3.2病理組織切片分析 29 3.3.3微血管數測量 30 3.3.4免疫螢光染色 31 3.4 結論 31 參考文獻 33 圖索引 圖1-1、細胞經由短針或導管注射至壞死心肌邊緣處示意圖 2 圖1-2、甲基纖維素的分子結構式 3 圖1-3、甲基纖維素成膠機制 4 圖1-4、細胞球體製備的示意圖 5 圖1-5、血管新生示意圖 6 圖1-6、cbMSC/HUVEC核層細胞球體結構示意圖 7 圖1-7、論文研究計畫 8 圖2-1、細胞球體生產系統製備示意圖 11 圖2-2、核層細胞球體培養方法流程示意圖 11 圖2-3、核層細胞球體培養於matrigel示意圖 12 圖2-4、核層細胞球體型態 15 圖2-5、HUVEC及cbMSC的細胞外間質定性分析-免疫螢光染色 16 圖2-6、HUVEC及cbMSC的細胞外間質定量分析-Real-Time qPCR 17 圖2-7、不同型態細胞球體培養於 Matrigel 18 圖2-8、不同比例核層細胞球體培養於Matrigel 19 圖2-9、核層細胞球體於不同比例下管狀結構形成速率及結點數統計20 圖2-10、核層細胞球體培養於 Matrigel 七天 20 圖2-11、核層細胞球體培養於 Matrigel 十二天 21 圖2-12、核層細胞球體培養於Matrigel七天後免疫螢光染色 22 圖2-13、基因表現量結果 23 圖3-1、細胞球注射老鼠背皮下部示意圖 26 圖3-2、病理組織切片製作過程流程圖 26 圖3-3、免疫組織化學染色製作流程圖 27 圖3-4、Matrigel注射至老鼠背部皮下七天後情形 28 圖3-5、組織切片H&E染色 29 圖3-6、CD31免疫化學染色結果 30 圖3-7、血管密度 30 圖3-8、免疫螢光染色結果 31

    1. Gulbins, H.;Meiser, B. M.;Reichenspurner, H., et al. "Cell transplantation - A potential therapy for cardiac repair in the future?" Heart Surgery Forum 5, E28-E34 (2002).
    2. Anversa, P., Nadal-Ginard, B., “Myocyte renewal and ventricular remodelling,” Nature, 415, pp.240-243, 2002.
    3. Tomita, S., Mickle, D.A., Weisel, R.D., Jia, Z.Q., Tumiati, L.C., Allidina, Y., Liu, P., Li, R.K., “Improved heart functions with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation,” J Thorac Cardiovasc Surg, 123, pp.1132-1140, 2002.
    4. Davani, S., Marandin, A., Mersin, N., Royer, B., Kantelip, B., Hervé, P., Etievent, J.P., Kantelip, J.P., “Mensenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in rat cellular cardiomyoplasty model,” Circulation, 108, suppl. 1, pp.II253-258, 2003.
    5. Saito, T., Kuang, J.Q., Lin, C.C., Chiu, R.C., “Transcoronary implantation of bone marrow stromal cells ameliorates cardiac function after myocardial infarction,” J Thorac Cardiovasc Surg, 126, pp.114-123, 2003.
    6. Jackson, K.A., Majka, S.M., Wang, H., Pocius, J., Hartley, C.J., Majesky, M.W., Entman, M.L., Michael, L.H., Hirschi, K.K., Goodell, M.A. “Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells,” J Clin Invest, 107, pp.1395-1402, 2001.
    7. Reffelmann, T., Kloner, R.A., “Cellular cardiomyoplasty--cardiomyocytes, skeletal myoblasts, or stem cells for regenerating myocardium and treatment of heart failure?”Cardiovasc Res, 58, pp.358-368, 2003.
    8. Laflamme, M.A., Murry, C., “Regenerating the heart,” Nat Biotechnol, 23, pp.845-856, 2005.
    9. Hsih, P.C., Davis, M.E., Lisowski, L.K., Lee, R.T., “Endothelial-cardiomyocyte interactions in cardiac development,” Annu Rev Physiol, 68, pp.51-66, 2006.
    10. Maintenance of the culture cell lines (1994) in Culture of animal cells, eds Freshney RI (Wiley-Liss, New York), pp153-154.
    11. Shimizu, T., Yamato, M., Kikuchi, A., Okano, T., “Cell sheet engineering for myocardial tissue reconstruction,” Biomaterials, 24, pp.2309-2316, 2003.
    12. Rosenstrauch, D., Poglajen, G., Zidar, N., Gregoric, I.D., “Stem celltherapy for ischemic heart failure,” Tex Heart Inst J, 32, pp.339–347, 2005.
    13. Fukuda, K. “Progress in myocardial regeneration and cell transplantation” Circ J, 69, pp.1431-1446, 2005.
    14. Teng, C.J., Luo, J., Chiu, R.C., Shum-Tim D., “Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty,” J Thorac Cardiovasc Surg, 132, pp.628-632, 2006.
    15. Hsieh, P.C., Davis, M.E., Gannon, J., MacGillivray, C., Lee R.T., “Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers,” J Clin Invest, 116, pp.237-248, 2006.
    16. Grafflin MW, “Derivatives of Cellulose,” Cellulose and Cellulose Derivatives, (1963) 930-937.
    17. 賀孝雍, “有機化學”, 曉園出版公司, (1989) 台北, 394.
    18. Qiu, Y.;Park, K. "Environment-sensitive hydrogels for drug delivery." Advanced Drug Delivery Reviews 53, 321-339 (2001).
    19. Haque, A.;Richardson, R. K.;Morris, E. R., et al. "Thermogelation of methylcellulose: 2 effect of hydroxypropyl substituents." Carbohydrate Polymers 22, 175-186 (1993).
    20. Jeong, B.;Kim, S. W.;Bae, Y. H. "Thermosensitive sol-gel reversible hydrogels." Advanced Drug Delivery Reviews 54, 37-51 (2002).
    21. Yang, M.J., Chen, C.H., Lin, P.J., Huang. C.H., Chen, W., Sung, H.W., “Novel method of forming human embryoid bodies in a polystyrene dish surface-coated with a temperature-responsive methylcellulose hydrogel,” Biomacromolecules, 8, pp.2746-2752, 2007.
    22. Lee, W.Y., Chang, Y.H., Yeh, Y.C., Chen, C.H., Lin, K.M., Huang, C.C., Chang, Y., Sung, H.W., “The use of injectable spherically-symmetric cell aggregates self-assembled in a thermo-responsive hydrogel system for enhanced cell transplantation, ” Biomaterials, 30, pp.5505-5513, 2009.
    23. Lee, S.H., Wolf PL , Escudero R, “Early expression of angiogenesis factors in acute myocardial ischemia and infarction”N Engl J Med ,pp3429 -626,2000.
    24. Krenning G, van Luyn MJ, Harmsen MC “Endothelial progenitor cell-based neovascularization: implications for therapy” Trends Mol Med. ,pp.180-9, 2009.
    25. Staton, C.A., Stribbling, S.M., Tazzyman, S., Hughes, R., Brown, N.J., Lewis, C.E., “Current methods for assaying angiogenesis in vitro and in vivo,” Int J Exp Patho, 85, pp.233-248, 2004.
    26. Kubota, Y., Kleinman, H.K., Martin, G.R., Lawley, T.J., “Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures,” J Cell Biol, 107, pp.1589-1598, 1998.
    27. Koike, N., Fukumura, D., Gralla, O., Au, P., Schechner, J.S., Jain, R.K., “Tissue engineering: creation of long-lasting blood vessels,” Nature, 428, pp.138-139, 2004.
    28. Nör, J.E., Peters, M.C., Christensen, J.B., Sutorik, M.M., Linn, S., Khan, M.K., Addison, C.L., Mooney, D.J., Polverini, P.J., “Engineering and characterization of functional human microvessels in immunodeficient mice,” Lab Invest, 81, pp.453-463, 2001
    29. Schechner, J.S., Nath, A.K., Zheng, L., Kluger, M.S., Hughes, C.C., Sierra-Honigmann, M.R., Lorber, M.I., Tellides, G., Kashgarian, M., Bothwell, A.L., Pober, J.S., “In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse,” Proc Natl Acad Sci U S A, 97, pp.9191-9196, 2000.
    30. Au, P., Tam, J., Fukumura, D., Jain, R.K., “Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature,” Blood, 111, pp.4551-4558, 2008.
    31. Jain, R.K., “Molecular regulation of vessel maturation,” Nat Med, 9, pp.685-693, 2003.
    32. Hirschi, K.K., Rohovsky, S.A., D'Amore, P.A., “PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate,” J Cell Biol, 141, pp.805-814, 1998.
    33. Melero-Martin, J.M., De Obaldia, M.E., Kang, S.Y., Khan, Z.A., Yuan, L., Oettgen, P., Bischoff, J., “Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells,” Circ Res, 103, pp.194-202, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE