簡易檢索 / 詳目顯示

研究生: 李欣祐
Lee, Hsin-Yu
論文名稱: 包含後處理的位元可靠度之節點列表連續消去極化碼解碼器
A Bit-Reliability Based Node-Wise List Successive Cancellation Polar Decoder With Post Processing
指導教授: 翁詠祿
Ueng, Yeong-Luh
口試委員: 王忠炫
Wang, Chung-Hsuan
陳彥銘
Chen, Yen-Ming
李晃昌
Lee, Huang-Chang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 61
中文關鍵詞: 極化碼列表連續消去位元可靠度後處理超大型積體電路架構
外文關鍵詞: Polar codes, list successive cancellation, bit-reliability, post processing, VLSI architecture
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 極化碼被證明是可達到向農容量的編碼,且被選為下世代行動通訊技術控制通道的參考編碼方式,近年來極化碼的研究變得非常熱門。當奇偶檢查碼幫助下的列表連續消去演算法被選為解碼演算法時有很好的錯誤更正性能。然而,循序解碼的特性與高硬體複雜度使其難以被應用於需要高可靠度與低延時的實際通訊系統中。因此,本文提出了包含後處理的以節點寬度為單位之列表連續消去極化碼解碼器,其中應用所提出的方法:包含不可靠位元的節點分析、有效率的節點處理、路徑量度正規化與後處理,以同時實踐高吞吐量與高可靠度,並改善硬體吞吐量面積比。所提出架構在TSMC 90nm 製程下,相較於先前文獻有較高的吞吐量面積比與錯誤更正能力。據我們所知,此硬體架構也為第一個實作包含後處理的列表連續消去解碼器。


    Polar codes with list successive cancellation (LSC) decoding has been selected as the standard of fifth generation new radio (5G NR) control channel. In this work, we proposed a bit-reliability based node-wise (BRNW) CA-LSC decoder architecture. With the proposed bit-reliability based nodes (BRBN) and bit-reliability based nodes processing (BRNP) methods, the latency of our baseline architecture can be reduced around 37\%. Together with the proposed path metric normalization (PMN), the area efficiency of the baseline architecture improved almost 62\%. Even more, we also proposes post processing for bit-reliability based CA-LSC decoding which helps our decoder achieve better error rate performance under the same list size. The corresponding VLSI architecture implementation result is synthesized using the Taiwan Semiconductor Manufacture Company (TSMC) 90nm complementary metal oxide semiconductor (CMOS) process. Compared to other state-of-the-art architectures, our decoders achieves better area efficiency. To our knowledge, it is also the first hardware implementation of CA-LSC decoder with post processing, and it has almost 2.5 times area efficiency compared to the latest list size 32 decoder.

    1 Introduction 1 2 Preliminaries 6 2.1 Construction of Polar Codes . . . . . . . . . . . . . . . . . . . . 6 2.2 List Successive Cancellation Decoding . . . . . . . . . . . . . . . 7 2.3 Nodes Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.1 Rate-0 nodes . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.2 Rep nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.3 Rate-1 nodes . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.4 SPC nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.5 ML nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Proposed Bit-Reliability Based Decoding 17 3.1 Bit-Reliability Based Nodes . . . . . . . . . . . . . . . . . . . . 18 3.2 Bit-Reliability Based Nodes Processing . . . . . . . . . . . . . . 21 3.2.1 BRNP for Rate-1 nodes . . . . . . . . . . . . . . . . . . 22 3.2.2 BRNP for SPC nodes . . . . . . . . . . . . . . . . . . . . 27 3.2.3 BRNP for ML nodes . . . . . . . . . . . . . . . . . . . . 29 3.3 Path Metric Normalization . . . . . . . . . . . . . . . . . . . . . 32 3.4 Overall Architecture of BRNW CA-LSC decoder . . . . . . . . . 34 3.5 Latency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4 Post Processing for CA-LSC decoding 39 4.1 Review of List Successive Cancellation Bit-flip decoding . . . . . 39 4.2 Proposed Post Processing for Bit-Reliability Based CA-LSC de- coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3 Proposed Post Processing for BRNW CA-LSC decoding . . . . . 46 5 Experimental Results 51 5.1 Error Correction Performance . . . . . . . . . . . . . . . . . . . 51 5.2 Implementation Results . . . . . . . . . . . . . . . . . . . . . . 53 6 Conclusion 56 Bibliography 61

    [1] Y. Yongrun, P. Zhiwen, L. Nan, and Y. Xiaohu, “Successive Cancellation List Bit-flip Decoder for Polar Codes,” in 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, oct 2018, pp. 1–6.
    [2] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels,” IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073, 2009.
    [3] E. Sasoglu, E. Telatar, and E. Arikan, “Polarization for arbitrary discrete memoryless channels,” 2009 IEEE Information Theory Workshop, ITW 2009, vol. 2, pp. 144–148, 2009.
    [4] C. Zhang, B. Yuan, and K. K. Parhi, “Reduced-latency SC polar
    decoder architectures,” in 2012 IEEE International Conference on
    Communications (ICC). IEEE, jun 2012, pp. 3471–3475.
    [5] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A Semi-Parallel Successive-Cancellation Decoder for Polar Codes,” IEEE Transactions on Signal Processing, vol. 61, no. 2, pp. 289–299, jan 2013.
    [6] B. Yuan and K. K. Parhi, “Low-latency successive-cancellation polar decoder architectures using 2-bit decoding,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 4, pp. 1241–1254, 2014.
    [7] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar decoders: Algorithm and implementation,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 5, pp. 946–957, 2014.
    [8] I. Tal and A. Vardy, “List Decoding of Polar Codes,” pp. 1–11, 2012.
    [9] K. Niu and K. Chen, “CRC-Aided Decoding of Polar Codes,” IEEE
    Communications Letters, vol. 16, no. 10, pp. 1668–1671, oct 2012.
    [10] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross, and A. Burg,
    “Hardware Architecture for List Successive Cancellation Decoding of Polar Codes,” IEEE Transactions on Circuits and Systems II: Express
    Briefs, vol. 61, no. 8, pp. 609–613, aug 2014.
    [11] B. Yuan and K. K. Parhi, “Successive cancellation list polar decoder using log-likelihood ratios,” in 2014 48th Asilomar Conference on Signals, Systems and Computers. IEEE, nov 2014, pp. 548–552.
    [12] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-Based Successive Cancellation List Decoding of Polar Codes,” IEEE Transactions on Signal Processing, vol. 63, no. 19, pp. 5165–5179, 2015.
    [13] B. Yuan and K. K. Parhi, “Low-Latency Successive-Cancellation List Decoders for Polar Codes with Multibit Decision,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 10, pp. 2268–2280, 2015.
    [14] C. Xiong, J. Lin, Z. Yan, and S. Member, “Symbol-Decision Successive Cancellation List Decoder for Polar Codes,” vol. 64, no. 3, pp. 675–687, 2016.
    [15] Y. Fan, C. Xia, J. Chen, C.-Y. Tsui, J. Jin, H. Shen, and B. Li,
    “A Low-Latency List Successive-Cancellation Decoding Implementation
    for Polar Codes,” IEEE Journal on Selected Areas in Communications,
    vol. 34, no. 2, pp. 303–317, feb 2016.
    [16] S. A. Hashemi, C. Condo, W. J. Gross, S. S. Member, C. Condo, W. J. Gross, and S. S. Member, “A Fast Polar Code List Decoder Architecture Based on Sphere Decoding,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 12, pp. 1–13, dec 2016.
    [17] S. A. Hashemi, C. Condo, and W. J. Gross, “Fast Simplified Successive-Cancellation List Decoding of Polar Codes,” in 2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW).
    IEEE, mar 2017, pp. 1–6.
    [18] S. A. Hashemi, S. Member, C. Condo, and W. J. Gross, “Fast and
    Flexible Successive-Cancellation List Decoders for Polar Codes,” in
    IEEE Transactions on Signal Processing, vol. 65, no. 21, nov 2017, pp.
    5756–5769.
    [19] C. Xia, J. Chen, Y. Fan, C.-y. Tsui, J. Jin, H. Shen, and B. Li,
    “A High-Throughput Architecture of List Successive Cancellation Polar
    Codes Decoder With Large List Size,” IEEE Transactions on Signal
    Processing, vol. 66, no. 14, pp. 3859–3874, jul 2018.
    [20] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity improved successive cancellation decoder for polar codes,” in 2014 48th Asilomar Conference on Signals, Systems and Computers. IEEE, nov 2014, pp. 2116–2120.
    [21] C. Condo, F. Ercan, and W. J. Gross, “Improved successive cancellation flip decoding of polar codes based on error distribution,” in 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). IEEE, apr 2018, pp. 19–24.
    [22] F. Ercan, C. Condo, and W. J. Gross, “Improved Bit-Flipping Algorithm for Successive Cancellation Decoding of Polar Codes,” IEEE Transactions on Communications, vol. 67, no. 1, pp. 61–72, jan 2019.
    [23] L. Chandesris, V. Savin, and D. Declercq, “An Improved SCFlip Decoder for Polar Codes,” in 2016 IEEE Global Communications Conference (GLOBECOM). IEEE, dec 2016, pp. 1–6.
    [24] J. Lin, J. Sha, L. Li, C. Xiong, Z. Yan, and Z. Wang, “A High Throughput List Decoder Architecture for Polar Codes,” Proceedings - IEEE International Symposium on Circuits and Systems, vol. 2016-July, no. 6, pp. 153–156, 2016.
    [25] G. Berhault, C. Leroux, C. Jego, and D. Dallet, “Partial sums generation architecture for successive cancellation decoding of polar codes,” in IEEE Workshop on Signal Processing Systems, SiPS: Design and Implementation. Institute of Electrical and Electronics Engineers Inc., 2013, pp.407–412.

    QR CODE