研究生: |
王聲葦 Sheng-Wei Wang |
---|---|
論文名稱: |
Routing in All-Optical WDM Networks 全光式光纖網路上繞徑之研究 |
指導教授: |
林華君
Hwa-Chun Lin |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 102 |
中文關鍵詞: | 繞徑 、光波分割多工 、群播 |
外文關鍵詞: | Routing, WDM, Multicast, Splitter Placement |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著大量多媒體資訊在網路上傳送,使用者對於頻寬的需求也愈來愈高。
使用光波分割多工技術的全光式光纖網路能夠提供相當大量的頻寬以符合此急速增加的需求。
在全光式光纖網路中,繞徑的方法在整體網路效能中扮演了一個很重要的角色。
本博士論文主要分成三個部分研究在全光式光纖網路上繞徑的相關議題。
在本論文的第一部分,我們提出了一個新的替用式繞徑設計概念,我們的目標為降低連線阻斷率。
我們的主要概念為,我們要設計出新的替用式繞徑方法,可以將每一個來源目地配對的流量,以最佳化的流量分配分散在網路上。
若是有一種新的替用式繞徑方法,可以使網路上呈現最佳化流量分配時的流量型態,這個替用式繞徑方法應該可以最小化連線阻斷率。
我們將如何得到網路上最佳化分配數學化為一個非線性的流量最佳化問題,並使用標準的最佳化方法得到最佳化流量分配。
我們以此概念設計了兩種不同的替用式繞徑方法,一種為固定替用式繞徑,而另一種為動態替用式繞徑。
經過模擬的結果,我們發現我們提出的替用式繞徑方法都能大量降低連線阻斷率。
在第二部分,我們考量到替用式繞徑方法所使用的路徑問題。
在替用式繞徑中,每一個來源目的配對都事先決定多條路徑。
在以往的研究中,替用式繞徑多使用最短且不共用光纖的多條路徑。
然而,根據網路拓璞及每一來源目的配對的流量,這並不是一個好的選擇。
我們在這一部分提出了新的找尋不共用光纖的多條路徑的方法,目的為這些路徑在給替用式繞徑使用時,能夠有最低的連線阻斷率。
這個方法的主要概念為從被網路上最佳化流量分配所使用的路徑中尋找最好而且不共用光纖的多條路徑。
經過模擬的結果,我們發現我們提出的尋找路徑方法,在兩種不同的替用式繞徑方法使用下,都能有效地降低連線阻斷率。
在最後一個部分,我們考量在全光式光纖網路上的群播問題。
在光纖網路上,一個群播樹由一棵光樹來傳送,而在這一棵光樹上的每一個分光點,都必需為擁有分光能力的交換器。
然而,擁有分光能力的交換器比起一般交換器的成本大很多,因此並非每一個點都是擁有分光能力的交換器。
在如此的網路上做群播的繞徑,被稱做疏離分光群播繞徑。
疏離分光群播繞徑的效能,除了取決於繞徑方法外,具有分光能力的交換器在網路上的位置也很重要。
在這一部分,我們即研究在網路上決定具有分光能力交換器所擺設位置方法。
我們提出了兩個方法決定如何擺設這種交換器。
經過模擬之後,我們發現其中一種方法和最佳化的方法有很近的效能。
而我們的擺設方法和已知的疏離分光繞徑方法亦可以一起考慮,更進一步提升效能。
In all-optical WDM networks, routing algorithms play an important role in the performance of the networks.
In this thesis, we consider some research topics related to routing algorithms in all-optical WDM networks.
Among the three categories of unicast routing algorithms for all-optical WDM networks, alternate routing algorithms are computationally efficient and able to yield low connection blocking probability.
In the first part, we propose a new approach to designing alternate routing algorithms for all-optical WDM networks in order to reduce the connection blocking probability.
The key idea is to try to route traffic in approximately the optimal way of splitting the traffic among the multiple routing paths between each source-destination pair.
Two alternate routing algorithms are proposed based on this approach.
Our simulation results show that the alternate routing algorithms designed according to the optimal way of splitting the traffic can effectively reduce the connection blocking probability.
In the second part, we consider the routing paths for alternate routing algorithms.
Depending on the traffic requirements of all source-destination pairs, hop-count based \mbox{$k$-shortest} link-disjoint paths used in previous works may not be the best choice for the predetermined routing paths.
We propose a method to find a set of link-disjoint routing paths between each source-destination pair to be used by an alternate routing algorithm in order to reduce the connection blocking probability.
The key idea is to find a set of link-disjoint routing paths based on the routing paths that are utilized by the optimal traffic pattern in the network.
Our simulation results show that using the link-disjoint routing paths found by the proposed method yields significantly lower connection blocking probability than employing the hop-count based \mbox{$k$-shortest} link-disjoint paths and using the routing paths found by the capacity-balanced alternate routing method~\cite{ho02}.
In the third part, multicast routing is taken into account.
To reduce the cost, splitters which are used to realize multicast trees can be placed at a subset of nodes.
The problem of selecting a subset of nodes to place the splitters such that certain performance measure is optimized is called the splitter placement problem.
The goal is to place a given number of splitters in the network such that the average per link wavelength resource usage of multicast connections is minimized.
Two splitter placement methods are proposed.
The two proposed splitter methods are shown to yield significant lower average wavelength resource usage than the random placement method.
One of the methods is shown to produce near minimum average wavelength resource usage.
[1] M. Ali and J. Deogun, “Allocation ofMulticast Nodes inWavelength-Routed Networks,” ICC 2000, vol.2, pp. 614-618.
[2] M. Ali, “Optimization of Splitting Node Placement inWavelength-Routed Optical Networks,” IEEE Journal on Selected Area in Communications, vol. 20, no. 8, pp. 1571-1579, October 2002.
[3] R. Bhandari, “Optimal Diverse Routing in Telecommunication Fiber Networks,” in Proceedings of IEEE INFOCOM 1994.
[4] R. Bhandari, Survivable Networks: Algorithms for Diverse Routing, Kluwer Academic Publishers, Norwell, MA, USA, 1999.
[5] A. Birman and A. Kershenbaum, “Routing and Wavelength Assignment Methods in Singlehop All-optical Networks with Blocking,” Proceedings of IEEE INFOCOM, vol. 2, pp. 431-438, April 1995.
[6] A. Birman, “Computing Approximate Blocking Probabilities for a Class of All-optical Networks,”in IEEE Journal on Selected Areas in Communications, vol. 14, no. 5, pp. 852-857, June 1996.
[7] C. A. Brackett, , “Dense Wavelength Division Multiplexing Networks: Principles and Applications,”IEEE Journal of Selected Area on Communications, vol. 8, no. 6, pp.948-964, August 1990.
[8] D. Cavendish, A. Kolarov, and B. Sengupta, “Routing and Wavelength Assignment in WDM Mesh Networks,” in Proceedings of IEEE GLOBECOM 2004, vol. 2, pp. 1016-1022, November 2004.
[9] K. Chan and T. P. Yum, “Analysis of Least Congested Path Routing in WDM Lightwave Networks,” in Proceedings of IEEE INFOCOM 1994, vol. 2, pp. 962-969, June 1994.
[10] I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath Communications: An Approach to High Bandwidth OpticalWAN’s,” IEEE Transactions on Communications, vol. 40, no. 7, pp.1171- 1182, July 1992.
[11] I. C. Choi and D. Goldfarb, “SolvingMulticommodity Network Flow Problems by an Interior Point Method,” Large-Scale Numerical Optimization, T. Coleman and Q. Li eds., SIAM, Philadelphia, pp. 58-69, 1990.
[12] X. Chu and B. Li, “A Dynamic RWA Algorithm in a Wavelength-routed All-optical Network with Wavelength Converters,” in Proceedings of IEEE INFOCOM 2003, vol. 3, pp. 1795-1804, March 2003.
[13] X. Chu and J. Liu, “DLCR: A New Adaptive Routing Scheme in WDM Mesh Networks,” Proceedings of IEEE ICC, vol. 3, pp. 1797-1801, May 2005.
[14] X. Chu and B. Li, “Dynamic Routing and Wavelength Assignment in the Presence of Wavelength Conversion for All-Optical Networks,” IEEE/ACM Transactions on Networking, vol.13, no. 3, June 2005, pp. 704-715.
[15] S.-P. Chung and K.W. Ross, “Reduced Load Approximations for Multirate Loss Networks,” in IEEE Transactions on Communications vol.41, pp. 1222-1231, August 1993.
[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Sten, Introduction to Algorithms, 2nd edition, McGraw-Hill Book Company, Boston, MA, 2001.
[17] A. K. Dutta, N. K. Dutta, and M. Fujiwara, WDM Technologies: Optical Networks, Elsevier Academic Press, Burlington (2004).
[18] Z. Dziong and J. W. Roberts, “Congestion Probabilities in A Circuit-Switched Integrated Services Network,” in Performance Evaluation, vol.7 no.4, pp.267-284, Nov. 1987
[19] L. Fratta, M. Gerla, and L. Kleinrock, “The Flow Deviation Method: An Approach to Storeand-forward Network Design,” in Networks, 3, pp. 97-133, 1973.
[20] M. Fukushima, “A Nonsmooth Optimization Approach to Nonlinear Multicommodity Network Flow Problems,” Journal of the Operations Research Society of Japan, vol. 27, pp. 151-176, 1984.
[21] A. Girard, Routing and Dimensioning Circuit-switched Networks, AddisonWesley, 1990.
[22] J. -L. Goffin, J. Gondzio, R. Sarkissian, and J. -P. Vial, “Solving Nonlinear Multicommodity Flow Problems by the Analytic Center Cutting Plane Method,” in Mathematical Programming, 76, pp. 131-154, 1997.
[23] Y. Gong, P. Lee, and W. Gu “ A Novel Adaptive RWA Algorithm in Wavelength-Routed Network,” Proceedings of IEEE GLOBECOM 2003, vol. 5, pp. 2580-2584, December 2003.
[24] H. Harai, M. Murata, and H. Miyahara, “Performance of Alternate Routing Methods in All-optical Switching Networks,” in Proceedings of IEEE INFOCOM 1997, vol. 2, pp. 516-524, April 1997.
[25] P. -H. Ho and H. T. Mouftah, “An Approach for Enhancing Fixed Alternate Routing in Dynamic Wavelength-Routed WDM Networks,” in Proceedings of IEEE GLOBECOM 2002, vol. 3, pp. 2792-2797, November 2002.
[26] ITU-T Recommendation E.600, “Terms and definitions of traffic engineering,” Mar. 1993.
[27] ITU-T Recommendation E.721, “Network grade of service parameters and target values for circuit-switched services in the evolving ISDN,” May 1999.
[28] M. Jin, Q. Hu, Z. Zhang, and W. Hu, “Integer Linear Programming Models and Performance Evaluation on Wavelength Rearrangement in A Mesh-Restored All-Optical Network,” in
IEEE Communications Letters, vol.10, no.2, pp. 111- 113, Feburary 2006.
[29] F. P. Kelly, “Blocking Probabilities in Large Circuit-Switched Networks,” in Advances in Applied Probability 18 (1986), pp.473-505.
[30] J.-S. Kim, D.C. Lee, and H. Sridhar,“Route-Metric-Based Dynamic Routing and Wavelength Assignment for Multifiber WDM Networks,” in IEEE Journal on Selected Areas in Communications, vol.24, no.12, pp.56-68, December 2006.
[31] K. C. Lee and V. O.K. Li, “A Wavelength-Convertible Optical Network,” in IEEE/OSA Journal of Lightwave Technology, vol. 11, no.5/6, May/June 1993.
[32] L. Li and A. K. Somani, “DynamicWavelength Routing Using Congestion and Neighborhood Information,” in IEEE/ACM Transactions on Networking, vol. 7, no. 5, pp. 779-786, October 1999.
[33] G. Li, D.Wang, C. Kalmanek, and R. Doverspike, “Efficient Distributed Path Selection for Shared Restoration Connections,” in Proceedings of IEEE INFOCOM 2002, pp. 140-149.
[34] W. Liang and X. Shen, “A General Approach for All-to-All Routing in Multihop WDM Optical Networks,” in IEEE/ACM Transactions on Networking, vol.14, no.4, pp. 914-923, August 2006.
[35] U. Manber, Introduction to Algorithms: A Creative Approach, Addison Wesley, 1989.
[36] D. Mitra and J. B. Seery, “Comparative Evaluations of Randomized and Dynamic Routing Strategies for Circuit-switched Networks,” IEEE Transactions on Communications, vol. 39, issue 1, pp.102 - 116, January 1991.
[37] A. Mokhtar and M. Azizoglu, “Adaptive Wavelength Routing in All-optical Networks,” in IEEE/ACM Transactions on Networking, vol. 6, no. 2, pp. 197-206, April 1998.
[38] X. Qin and Y. Yang, “Network-Wide Blocking Probability in Sparse Limited Wavelength Convertible WDM Networks,” Proceedings of IEEE GLOBECOM, vol. 7, pp. 3727-3731, 1-5 December 2003.
[39] R. S. Ramamurthy and B. Mukherjee, “Fixed-alternate Routing and Wavelength Conversion in Wavelength-routed Optical Networks,” in IEEE/ACM Transactions on Networking, vol.10, no. 3, pp. 351-367, June 2002.
[40] L. Ruan, H. Luo and C. Liu, “A Dynamic Routing Algorithm with Load Balancing Heuristics for Restorable Connections in WDM networks,” in IEEE Journal on Selected Areas in Communications, vol.22, no.9, pp. 1823-1829, November 2004.
[41] L. H. Sahasrabuddhe and B. Mukherjee, “Light Trees: Optical Multicasting for Improved Performance in Wavelength Routed Networks,” IEEE Communications Magazine vol. 37,
no. 2, pp.67-73, February 1999.
[42] C. Siva Ram Murthy and M. Gurusamy, WDM Optical Networks: Concepts, Design, and Algorithms, Prentice-Hall, 2002.
[43] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP Topologies with Rocketfuel,” in Proceedings of ACM SIGCOMM, Pittsburgh, PA, August 2002.
[44] A. Sridharan and K. N. Sivarajan, “Blocking in All-Optical Networks,” in IEEE/ACM Transactions on Networking, vol. 12, no. 2, pp. 384-397, April 2004.
[45] T. E. Stem, “Linear lightwave networks: How far can they go?” Proceedings of IEEE GLOBECOM'90, San Diego, CA, December 1990, pp. 1866-1871.
[46] S. Subramaniam, M. Azizoglu, and A. K. Somani, “All-Optical Networks with Sparse Wavelength Conversion,” in IEEE/ACM Transactions on Networking, vol. 4, no. 4, pp. 544-557, August 1996.
[47] Y. Suzuki and H. Toba, “Recent Research and Development of All-optical Wavelength Conversion Devices,” NTT Technical Review, vol. 1, no. 1, pp. 26-31, April 2003.
[48] T. Tripathi and K. N. Sivarajan, “Computing Approximate Blocking Probabilities in Wavelength Routed All-Optical Networks with Limited-range Wavelength Conversion,” in IEEE Journal on Selected Areas in Communications, vol. 18, issue 10, pp. 2123-2129, October 2000.
[49] W. Tseng and S. Kuo, “All-optical Multicasting onWavelength-RoutedWDM Networks with Partial Replication,” Proceedings of IEEE ICOIN, 2001, pp.813-818.
[50] R. Vargerg, Convex Functions, Academic Press, 1973.
[51] K. D. Wu, J. C. Wu and C. S. Yang, “Multicast Routing with Power Consideration in Sparse Splitting WDM Networks,” ICC 2001, vol.2, pp.513-517.
[52] D, Xu, Y. Chen and C. Qiao, “A New Heuristic for Finding the Shortest Path with A Disjoint Counterpart,” in Optical Fiber Communication Conference, 2004.
[53] Y. Yoo, S. Ahn, and C.S. Kim, “Adaptive Routing Considering the Number of Available Wavelengths in WDM Networks,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 8, pp. 1263-1273, October 2003.
[54] E. W. Zegura, “GT-ITM: Georgia Tech Internetwork Topology Models (software),” http://www.cc.gatech.edu/fac/Ellen. Zegura/gt-itm/gt-itm.tar.gz, 1996.
[55] X. Zhang, J. Y. Wei, and C. Qiao, “Constrained Multicast Routing in WDM Networks with Sparse Light Splitting,” IEEE/OSA Journal of Lightwave Technology, vol. 18, no. 12, pp. 1917-1927, December 2000.
[56] D. Zhemin and M. Hamdi, “A Simple Routing andWavelength Assignment Algorithm Using the Blocking Island Technique for All-Optical Networks,” Proceedings of IEEE ICC 2002, vol. 5, pp. 2907-2911, April 2002.
[57] J. Zheng and H. T. Mouftah, Optical WDM Networks: Concepts and Design Priciples, A John Wiley & Sons, 2004.
[58] Y. Zhu, G. N. Rouskas, and H. G. Perros, “A Path Decomposition Approach for Computing Blocking Probabilities in Wavelength-routing Networks,” in IEEE/ACM Transactions on
Networking, vol. 8, issue 6, pp. 747-762, December 2000.
[59] S. Zionts, Linear and Integer Programming, Prentice-Hall, 1974.