簡易檢索 / 詳目顯示

研究生: 陳昶瑋
Chen,Chang-Wei
論文名稱: 低密度偶校碼應用在快閃記憶體上的可行性分析
Feasibility Analysis of Low-Density Parity-Check Code Applied to Flash Memory
指導教授: 吳誠文
Wu,Cheng-Wen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 79
中文關鍵詞: 錯誤更正碼低密度偶校碼快閃記憶體
外文關鍵詞: ECC, LDPC code, flash memory
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 快閃記憶體(Flash Memory)是目前消費性電子產品中被廣泛使用的元件之一。在對於快閃記憶體可靠度以及讀取速度的考量之下,單層單元(Binary-Level Cell,BLC)和多層單元(Multi-Level Cell,MLC)快閃記憶體根據不同的需求被同時應用固態硬碟上面,這是一種可以得到高容量且高速儲存元件的較大經濟效益解決方案。然而由於快閃記憶體本身在一定可靠度下具有寫入/抹除(program/erase)次數的限制,如何隨著時間增長並維持良好的檔案完整性,便成了一項重要的議題。錯誤更正編碼(Error Correction Coding,ECC)是現今被拿來運用並且增加快閃記憶體的耐用性與可靠度。而BCH碼 (Bose-Chaudhuri-Hocquenghem codes) 以及漢明碼 (Hamming code) 是目前被廣泛應用在快閃記憶體上的錯誤更正編碼。

    在這篇論文中,我們將焦點放在低密度偶校碼 (Low-Density Parity-Check codes, LDPC codes) 在快閃記憶體上的應用,這種錯誤更正編碼在訊息理論中被證實在一個受雜訊干擾的傳輸通道上能使檔案可靠傳輸的速度非常接近於最大理論值。我們針對低密度偶校碼搭配不同的解碼方式來討論將其應用在快閃記憶體上的可行性,之後我們就低密度偶校碼搭配和BCH碼同樣解碼層級的位元翻轉解碼器 (Bit-Flipping decoder),並根據模擬以及估算的結果來比較這兩種錯誤更正碼應用在快閃記憶體上時所擁有的錯誤更正能力、解碼所需花費的時間、以及編碼解碼電路在記憶體電路中所占額外的面積。在一些假設前提下,根據比較的結果,發現低密度偶校碼搭配位元翻轉解碼器相較於BCH碼來說擁有較差的能力。儘管如此,還是可以朝著尋找低密度偶校碼搭配軟判決解碼方式 (soft-decision decoding) 應用在快閃記憶體上的方向上繼續研究其可能性。


    第一章 導論 第二章 低密度偶校碼簡介 第三章 低密度偶校碼應用在快閃記憶體上的分析 第四章 針對低密度偶校碼搭配位元翻轉解碼器 應用在單層單元快閃記憶體上的分析 第五章 結論與未來展望

    [1] R. G. Gallager, “Low-density parity-check codes”, IEEE Trans. on Information Theory, vol.
    8, pp. 21–28, Jan. 1962.
    [2] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices”, IEEE Trans.
    on Information Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.
    [3] T. K. Moon, Error Correction Coding: Mathematical Methods and Algorithms, John Wiley
    and Sons Inc., Hoboken, NJ, 2005.
    [4] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-approaching
    irregular low-density parity-check codes”, IEEE Trans. on Information Theory, vol. 47, pp.
    619–637, Feb. 2001.
    [5] J. Hou, P. H. Siegel, and L. B. Milstein, “Performance analysis and code optimization of low
    density parity-check codes on rayleigh fading channels”, IEEE Journal on Selected Areas in
    Communications, vol. 19, pp. 924–934, May 2001.
    [6] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications, Prentice-
    Hall Inc., Englewood Cliffs, NJ, 1983.
    [7] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes based on Finite
    geometry: a rediscovery and new results”, IEEE Trans. on Information Theory, vol. 47, no.
    7, pp. 2711–2736, Nov. 2001.
    [8] T. Kasami, S. Lin, and W. Peterson, “Polynomial codes”, IEEE Trans. on Information Theory,
    vol. 14, pp. 807–814, Nov. 1968.
    [9] S. Lin, “Number of information symbols in polynomial codes”, IEEE Trans. on Information
    Theory, vol. 18, pp. 785–794, Nov. 1972.
    [10] Z. Li, L. Chen, L. Zeng, S. Lin, and W. H. Fong, “Efficient encoding of quasi-cyclic low-
    density parity-check codes”, IEEE Trans. on Information Theory, vol. 54, no. 1, pp. 71–81,
    Jan. 2006.
    [11] L. Chen, S. Yan, W. Zhang, and Z. Wu, “Hardware design of quasi-cyclic low-density parity-
    check encoder based on a novel rc-scheme”, IEEE International Conference on Circuit and
    Systems for Commnuications, pp. 594–598, May 2008.
    [12] S. Myung, K. Yang, and J. Kim, “Quasi-cyclic ldpc codes for fast encoding”, IEEE Trans. on
    Information Theory, vol. 51, no. 8, pp. 2894–2901, Aug. 2005.
    [13] L. Chen, J. Xu, I. Djurdjecvic, and S. Lin, “Near-shannon-limit quasi-cyclic low-density
    parity-check codes”, IEEE Trans. on Communications, vol. 52, no. 7, pp. 1038–1042, 2004.
    [14] J. L. Massey, Threshold Decoding, MIT Press, Cambridge, MA, 1963.
    [15] Z. Cui and Z. Wang, “Studies on practical low complexity decoding of low-density parity-
    check codes”, IEEE Workshop on Signal Processing Systems, pp. 216–221, Oct. 2007.
    [16] J. Zhang and M. P. C Fossorier, “A modified weighted bit-flipping decoding of low-density
    parity-check codes”, IEEE Communications Letters, vol. 8, pp. 165–167, Mar. 2004.
    [17] X. S. Zhou, B. F. Cockburn, and S. Bates, “Improved iterative bit flipping decoding algo-
    rithms for ldpc convolutional codes”, IEEE Pacific Rim Conference on Communications,
    Computers and Signal Processing, pp. 541–544, Aug. 2007.
    [18] C. Howland and A. Blanksby, “A 220 mw 1gb/s 1024-bit rate-1/2 low density parity check
    code decoder”, Proc. IEEE Custom Integrated Circuits Conf. (CICC), pp. 293–296, 2001.
    [19] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the sum-product algo-
    rithm”, IEEE Trans. on Information Theory, vol. 47, pp. 498–519, Feb. 2001.
    [20] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells—an overview”, Proc. of the
    IEEE, vol. 85, no. 8, pp. 1248–1271, Aug. 1997.
    [21] B. Ricco, G. Torelli, M. Lanzoni, A. Manstretta, H. E. Maes, D. Montanari, and A. Modelli,
    “Nonvolatile multilevel memories for digital applications”, Proceedings of the IEEE, vol. 86,
    no. 12, pp. 2399–2423, Dec. 1998.
    [22] IEEE, IEEE 1005 Standard Definitions and Characterization of Floating Gate Semiconductor
    Arrays, IEEE Standards Department, Piscataway, 1999.
    [23] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to flash memory”, Pro-
    ceedings of the IEEE, vol. 91, no. 4, pp. 489–502, Apr. 2003.
    [24] K. Takeuchi, T. Tanaka, and H. Nakamura, “A double-level-vth select gate array architecture
    for multilevel nand flash memories”, Proc. IEEE Int’l Solid-State Cir. Conf. (ISSCC), vol. 31,
    pp. 602–609, Apr. 1996.
    [25] T. C. Ong, A. Fazio, N. Mielke, S. Pan, N. Righos, G. Atwood, and S. Lai, “Erratic erase in
    ETOXT M flash memory array”, Symposium on VLSI Technology, vol. 7A-2, pp. 83–84, May
    1993.
    [26] F. Sun, S. Devarajan, K. Rose, and T. Zhang, “Multilevel flash memory on-chip error cor-
    rection based on trellis coded modulation”, Proc. IEEE Int’l Symp. on Circuits and Systems
    (ISCAS), May 2006.
    [27] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity
    check codes”, Electronic Letters, vol. 33, no. 6, pp. 457–458, Mar. 1997.
    [28] D. J. C. MacKay and E. A. Ratzer, “Gallager codes for high rate applications”,
    http://www.cs.utoronto.ca/ mackay/CodesRegular.html, 2003.
    [29] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares, F. Trivedi, E. Goodness,
    and L. R. Nevill, “Bit error rate in nand flash memories”, Proc. IEEE Int’l Reliability Physics
    Symp., pp. 9–19, May 2008.
    [30] R. Micheloni, R. Ravasio, A. Marelli, E. Alice, V. Altieri, A. Bovino, L. Crippa, E. D. Mar-
    tino, L. D’Onofrio, A. Gambardella, E. Grillea, G. Guerra, D. Kim, C. Missiroli, I. Motta,
    A. Prisco, G. Ragone, M. Romano, M. Sangalli, P. Sauro, M. Scotti, and S. Won, “A 4Gb
    2b/cell NAND flash memory with embedded 5b BCH ECC for 36MB/s system read through-
    put”, in Proc. IEEE Int’l Solid-State Cir. Conf. (ISSCC), 2006, pp. 497–506.
    [31] X. Youzhi, “Implementation of Berlekamp-Massey algorithm without inversion”, Communi-
    cations, Speech and Vision, IEE Proceedings I, vol. 138, pp. 138–140, 1991.
    [32] Y. Chen and K. K. Parhi, “Small area parallel Chien search architectures for long BCH
    codes”, IEEE Trans. on VLSI Systems, vol. 12, pp. 545–549, 2004.
    [33] J. Cho and W. Sung, “Strength-reduced parallel Chien search architecture for strong bch
    codes”, IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, vol.
    55, pp. 427–431, 2008.
    [34] L. H. Miles, J. W. Gambles, G. K. Maki, W. E. Ryan, and S. R. Whitaker, “An 860-
    mb/s (8158,7136) low-density parity-check encoder”, Proc. IEEE Int’l Solid-State Cir. Conf.
    (ISSCC), vol. 41, no. 8, pp. 1686–1691, Aug. 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE