簡易檢索 / 詳目顯示

研究生: 陳偉陵
Chen, Wei-Lin
論文名稱: 具電流回授補償之無電容式低壓降穩壓器
Area-efficient capacitor-free low dropout regulator with current mode feedback compensation
指導教授: 徐永珍
Hsu, Klaus Yung-Jane
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 83
中文關鍵詞: 低壓降穩壓器電流式回授
外文關鍵詞: low-dropout regulator, current feedback
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著可攜式電子產品的快速發展,為了有效地使用分配有限的電池能量,電源管理系統著實扮演著重要的角色,同時,開發低功耗的電路來延長電池壽命己然成為今日主要的研究課題。對於系統化(SoC)的電源管理晶片來說,必須能夠提供後端每一個子電路所需要的不同電壓及負載電流,低壓降線性穩壓器基於其架構簡單、低雜訊且快速反應時間的優點,成為非常重要而且廣泛應用的單元。

    傳統低壓降線性穩壓器利用外部電容串聯寄生電阻補償,然而增益及主極點位置隨負載變動,使得寄生電阻補償方式更顯得複雜。其次,數微米(μm)等級的外部電容佔據電路大量的面積,無法實際整合於晶片裡面,因此,研究發展一個無電容式的低壓降穩壓器將有助於達到完全SoC電源管理的目的。

    本研究提出利用電流式回授補償法設計出無需外部電容的低壓降線性穩壓器,將其應用於低功率感測晶片上,在1.2V至3.3V的操作電壓下,欲提供1V的穩定電壓,最大輸出電流50mA,並採用TSMC 0.35μm 2P4M CMOS製程實現。


    With the rapid development of portable electronic products, the development of low-power circuit to extend battery lifetime has become a major issue today. At the same time, in order to effectively use the limited battery energy distribution, power management system definitely plays a vital role. For system-on-chip(SoC)power management IC, it must be able to provide back-end needed for each sub-circuit of different voltage and load current. Low dropout linear regulator, based on its advantage of simple structure, low noise, and fast response time, becomes a very important and widely used unit.

    Conventional low dropout linear regulators use certain compensation that is with an external capacitor connecting a parasitic resistor in series. However, the gain and dominant pole location will change with the loading so this technique is manifestly complicated for compensation. Secondly, a capacitor of a few □F occupies large circuit area so that it can not be physically integrated on the chip. Researching a capacitor-free LDO, therefore, will help the purpose of implementing fully SoC power management.

    This study proposes the employment of a current feedback compensation design to eliminate the need of external capacitors for low dropout linear voltage regulators. And the design will be applied for low-power sensor interface ICs with 1.2V to 3.3V supply voltage. The regulator provides an output voltage of 1V as well as a maximum output current of 50mA. Finally, the circuit is implemented in TSMC 0.35μm 2P4M CMOS process.

    第一章 序論........ 1 1.1 引言..... 1 1.2 常見的LDO穩壓器之應用方式... 2 1.3 LDO穩壓器的功率效能探討..... 2 1.4 研究動機. .4 第二章 基本特性與文獻回顧... 6 2.1 基本LDO穩壓器的架構..6 2.2 基本特性. .6 2.2.1 穩態規格. .7 2.2.2 動態規格. .9 2.2.3 高頻規格... 12 2.3 LDO穩壓器的設計考量... 12 2.3.1 傳統LDO穩壓器的穩定度分析..... 12 2.3.2 傳統LDO穩壓器的補償技術....... 15 2.3.3 無外部電容式LDO穩壓器的考量... 17 2.3.4 Capacitor-free LDO穩壓器的補償技術..... 19 第三章 電路設計.... 22 3.1 Capacitor-free LDO穩壓器的設計概念....... 22 3.1.1 解決在低負載電流時高品質因子的問題..... 22 3.1.2 採用愈小補償電容值愈適合整合進SoC中.... 23 3.1.3 傳輸電晶體的閘極寄生電容太龐大而影響暫態反應速度..24 3.2 Capacitor-free LDO穩壓器分析.... 25 3.2.1 未補償元件的特性.... 25 3.2.2 未補償之交流響應.... 27 3.2.3 本文所提出的補償架構..29 第四章 電路模擬.... 37 4.1 帶差參考電壓源電路結構..37 4.2 帶差參考電路模擬...... 40 4.3 Capacitor-free LDO穩壓器的模擬.. 45 第五章 電路佈局與量測....... 55 5.1. 佈局考量..... 55 5.2. 量測考量..... 57 5.3. 量測方式與結果........ 58 5.3.1 線上暫態反應的測試方式........ 58 5.3.2 線上暫態反應的量測結果........ 59 5.3.3 負載暫態反應的測試方式........ 61 5.3.4 負載暫態反應的量測結果........ 63 5.4 量測討論..... 65 第六章 結論與討論.. 67 6.1 結論......... 67 6.2 討論......... 67 參考文獻..69 附錄..... 73 A.1 各子電路架構..73 A.2 所提出的Bandgap之各項規格的模擬..76 A.3 採用新架構Bandgap之LDO穩壓器的PSRR模擬... 80

    [1] http://www.national.com/nationaledge/feb06/article.html
    [2] B.Wolbert, “Designing With Low-Dropout Voltage Regulators”, http://micrel.com/_PDF/other/LDOBk.pdf
    [3] M. Paavola, M. Kämäräinen, M. Saukoski, and K. Halonen,” A Micropower Low-Dropout Regulator with a Programmable On-Chip Load Capacitor for a Low-Power Capacitive Sensor Interface”, the 15th IEEE International Conference on Electronics, Circuits and Systems, pp.450-453, August 2008.
    [4] M. Kamarainen, M. Paavola, M. Saukoski, E. Laulainen, L. Koskinen, M. Kosunen and K. Halonen, “A 1.51μW 1V 2nd-Order ∆E Sensor Front-End with Signal Boosting and Offset Compensation for a Capacitive 3-Axis Micro-Accelerometer”, IEEE International Solid-State Circuits Conference, pp. 578-580, February 2008
    [5] B. S. Lee, “Understanding the Terms and Definitions of LDO Voltage Regulators”, http://focus.ti.com.cn/cn/lit/an/slva079/slva079.pdf
    [6] Gabriel A. Rincon-Mora, Member, IEEE, and Phillip E. Allen, Fellow, IEEE, “A Low-Voltage, Low Quiescent Current, Low Drop-Out Regulator”, IEEE Journal of Solid-State Circuits, vol. 33, no. 1, January 1998
    [7] V. Gupta I, Gabriel A. R. M. and Prasun R., “Analysis and Design of Monolithic, High PSR, Linear Regulators for SoC Applications”, Proceedings of IEEE International SOC Conference, pp. 311-315, September 2004
    [8] K. Ogata, Modern Control Engineering, 4th ed. New York: Prentice Hall, 2001
    [9] Chaitanya K. Chava, Member, IEEE, and José Silva-Martínez, Senior Member, IEEE, “A Frequency Compensation Scheme for LDO Voltage Regulators”, IEEE Transactions on Circuits and Systems—I: Regular Papers, vol. 51, no. 6, June 2004
    [10] Xiaohua Fan, Student Member, IEEE, Chinmaya Mishra, Student Member, IEEE, and Edgar Sánchez-Sinencio, Fellow, IEEE, “Single Miller Capacitor Frequency Compensation Technique for Low-Power Multistage Amplifiers”, IEEE Journal of Solid-State Circuits, vol. 40, no. 3, March 2005
    [11] Robert J. Milliken, Jose Silva-Martínez, Senior Member, IEEE, and Edgar Sánchez-Sinencio, Fellow, IEEE, “Full On-Chip CMOS Low-Dropout Voltage Regulator”, IEEE Transactions on Circuits and Systems—I: Regular Papers, vol. 54, no. 9, September 2007
    [12] K. N. Leung and P. K. T. Mok, “Analysis of Multistage Amplifier–Frequency Compensation”, IEEE Transactions on Circuits and Systems—I: Fundamental Theory And Applications, vol. 48, no. 9, pp.1041-1056, September 2001
    [13] S. K. Lau, P. K. T. Mok, and K. N. Leung, “A Low-Dropout Regulator for SoC With Q-Reduction”, IEEE Journal of Solid-State Circuits, vol. 42, no. 3, pp. 658-664, March 2007
    [14] K. N. Leung and P. K. T. Mok, “A Capacitor-Free CMOS Low-Dropout Regulator With Damping-Factor-Control Frequency Compensation”, IEEE Journal of Solid-State Circuits, vol. 38, no. 10, pp.1691-1702, October 2003
    [15] H. C. Yang, M. H. Huang, and K. H. Chen, “High-PSR-Bandwidth Capacitor-Free LDO Regulator with 50μA Minimized Load Current Requirement for Achieving High Efficiency at Light Loads”, WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS, Issue 5, vol. 7, pp. 428-437, May 2008
    [16] H. C. Yang, H. H. Huang, C. L. Chen, M. H. Huang, and K. H. Chen, “Current Feedback Compensation (CFC) Technique for Adaptively Adjusting the Phase Margin in Capacitor-Free LDO Regulators”, the 51st Midwest Symposium on Circuits and Systems, pp. 5-8, August 2008
    [17] K. N. Leung, P. K. T. Mok, W. H. Ki, and J. K. O. Sin, “Three-Stage Large Capacitive Load Amplifier with Damping-Factor-Control Frequency Compensation”, IEEE Transactions on Solid-State Circuits, vol. 35, no. 2, pp.221-230, February 2000
    [18]K. N. Leung and P. K. T. Mok, “Nested Miller Compensation in Low-Power CMOS Design”, IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal Processing, vol. 48, no. 4, pp. 388-394, April 2001
    [19] H. Lee, and P. K. T. Mok, ” Active-Feedback Frequency-Compensation Technique for Low-Power Multistage Amplifiers”, IEEE Journal of Solid-State Circuits, vol. 38, no. 3, pp.511-520, March 2003
    [20] X. Peng and W. Sansen, “AC Boosting Compensation Scheme for Low-Power Multistage Amplifiers”, IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp.2074-2079, November 2004
    [21] X. Peng and W. Sansen, ” Transconductance With Capacitances Feedback Compensation for Multistage Amplifiers”, IEEE Journal of Solid-State Circuits, vol. 40, no. 7, pp. 1514-1520, July 2005
    [22] Gray, Hurst, Lewis and Meyer, “Analysis and Design of Analog Integrated Circuits” 4th edition, chapter 9, John Wiley,& Sons, Inc., New York
    [23] Gabriel A. R., “Active Capacitor Multiplier in Miller-Compensated Circuits”, IEEE Transactions on Solid-State Circuits, vol. 35, no. 3, pp. 26-32, January 2000
    [24] C. K. Wang, “Research and Design of Low Voltage High PSRR Bandgap Circuit”, Master Thesis, Department of Electronics Engineering, National Chiao Tung University, August 2006
    [25] Jim Williams,” Load Transient Response Testing for Voltage Regulators”, Application note 104, Linear Technology, October 2006 http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1003,C1142,C1041,P1754,D17358
    [26] Peter Hazucha, Member, IEEE, Tanay Karnik, Senior Member, IEEE, Bradley A. Bloechel, Associate Member, IEEE, Colleen Parsons, David Finan, and Shekhar Borkar, Member, IEEE, “Area-Efficient Linear Regulator With Ultra-Fast Load Regulation”, IEEE Journal of Solid-State Circuits, vol. 40, no. 4, April 2005
    [27] K. N. Leung and P. K. T. Mok, “A Sub-1-V 15-ppm/ C CMOS Bandgap Voltage Reference without Requiring Low Threshold Voltage Device”, IEEE Journal of Solid-State Circuits, vol. 37, no. 4, pp. 526-530, April 2002
    [28] J. Doyle, Y. J. Lee, Y. B. Kim, H. Wilsch and F. Lombardi, “A CMOS Subbandgap Reference Circuit With 1-V Power Supply Voltage”, IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 252-255, January 2004

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE