研究生: |
劉子逸 Liu, Tzu-I |
---|---|
論文名稱: |
利用Inception深度卷積神經網路計算薛丁格方程的激發態能量 Solving excited-state energies of Schrodinger equation via Inception deep convolutional neural network |
指導教授: |
陳人豪
Chen, Jen-Hao |
口試委員: |
劉晉良
Liu, Jinn-Liang 陳仁純 Chen, Ren-Chun |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 計算與建模科學研究所 Institute of Computational and Modeling Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 35 |
中文關鍵詞: | 卷積神經網路 、薛丁格方程式 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們針對薛丁格方程式的四種不同位能做神經網路的訓練,包含Simple
harmonic oscillator,Double-well inverted Gaussians,Infinite well和Random。
在Kyle Mills(2017) 文中,他所提出的16層CNN對於單輸出有不錯的結果,但對
於多輸出訓練卻做得很差,而在Jyun-Wei Chen(2020)文中,他對其架構加入了
兩層雙向的LSTM,使得多輸出也能保持著不錯的結果,但兩種架構共同的缺
點是訓練時間太久,這些促使我們提出一種替代的有效神經網絡架構來解決此
類問題。
我們使用了Inception block來構建我們的模型,並參考了stem的架構來進行
設計。訓練資料來源是文章中四種不同位能的方程,藉由有限差分法的方式去
計算特徵值。每筆資料都是256x256的解析度對應10個能階(其中包含一個基態
和9個激發態)
我們的模型特別的地方在於,將二維位能當作是一張圖片(input),每一像素
值相當於是該位置的位能值(output),每一張圖片(即位能),對應多個標籤(即
能量)。而特點在於其非常的輕,對於硬體要求降低許多,參數量相比於上述兩
篇文章的模型分別減少了47 % 以及85 % ,在訓練時間大幅減少的情況下卻能保
持差不多的結果甚至更好,也呈現了Jyun-Wei Chen(2020)文中缺少的Random
potential。
We propose a neural network model with Inception structure to solve the Schrodinger equation under four different potentials, including simple harmonic oscillators (SHOs), infinite wells (IWs), double-well inverted Gaussians (DIG), and random potentials. We used Python, TensorFlow and Keras to implement the code. The paper by Kyle Mills et al proposed 16-layer CNN which has good results for a single output value, but the same architecture has no good performance for multiple output training. In Jyun-Wei Chen’s thesis, he added two different architectures. The bidirectional LSTM can maintain good results for multiple output values, but the common disadvantage of these two architectures is that the amount of calculation is too large and the time for training process is too long. These motivates us to propose an alternative efficient neural network architecture to solve such problem. The training data are solving numerically by using finite difference method. Our proposed model are constructed by several neural network techniques, including stem, Inception convolution, and pooling. We use the discretization values of potential which has 256×256 grid points to as the input data. The features of our model are that it has a much reduced number for training parameters, but produces the comparable accuracy results. We also show the results for case of the random potentials which did not be presented in Jyun-Wei Chen’s thesis.
References
[1] https://kknews.cc/zh-tw/news/ppoa2xe.html.
[2] Nicholas M Ball and Robert J Brunner. Data mining and machine learning
in astronomy. International Journal of Modern Physics D, 19(07):1049–1106,
2010.
[3] Richard Burden and JD Faires. Numerical analysis. Cengage Learning, 2004.
[4] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem
with artificial neural networks. Science, 355(6325):602–606, 2017.
[5] Jyun Wei Chen. Excited-state energies of schrodinger equation using cnn-rnn
model. 2020.
[6] Travers Ching, Daniel S Himmelstein, Brett K Beaulieu-Jones, Alexandr A
Kalinin, Brian T Do, Gregory P Way, Enrico Ferrero, Paul-Michael Agapow,
Michael Zietz, Michael M Hoffman, et al. Opportunities and obstacles for
deep learning in biology and medicine. Journal of The Royal Society Interface,
15(141):20170387, 2018.
[7] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy,
Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, et al. Recent
advances in convolutional neural networks. Pattern Recognition, 77:354–377,
2018.
[8] Dan Guest, Kyle Cranmer, and Daniel Whiteson. Deep learning and its
application to lhc physics. Annual Review of Nuclear and Particle Science,
68:161–181, 2018.
[9] Samer Hijazi, Rishi Kumar, Chris Rowen, et al. Using convolutional neural
networks for image recognition. Cadence Design Systems Inc.: San Jose, CA,
USA, 9, 2015.
[10] Boyuan Huang, Zhenghao Li, and Jiangyu Li. An artificial intelligence atomic
force microscope enabled by machine learning. Nanoscale, 10(45):21320–
21326, 2018.
[11] Hokuto Kagaya, Kiyoharu Aizawa, and Makoto Ogawa. Food detection and
recognition using convolutional neural network. In Proceedings of the 22nd
ACM international conference on Multimedia, pages 1085–1088, 2014.
[12] Kazuo Kitaura and Keiji Morokuma. A new energy decomposition scheme for
molecular interactions within the hartree-fock approximation. International
Journal of Quantum Chemistry, 10(2):325–340, 1976.
[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural information
processing systems, 25, 2012.
[14] Kyle Mills, Michael Spanner, and Isaac Tamblyn. Deep learning and the
Schrodinger equation. Physical Review A, 96(4), OCT 18 2017.
[15] Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial
differential equations. The Journal of Machine Learning Research, 19(1):932–
955, 2018.
[16] Qing Rao and Jelena Frtunikj. Deep learning for self-driving cars: Chances
and challenges. In Proceedings of the 1st International Workshop on Software
Engineering for AI in Autonomous Systems, pages 35–38, 2018.
[17] D Raj Reddy. Speech recognition by machine: A review. Proceedings of the
IEEE, 64(4):501–531, 1976.
[18] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
[19] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.
[20] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on
learning. In Thirty-first AAAI conference on artificial intelligence, 2017.
[21] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1–9, 2015.
[22] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2818–2826, 2016.
[23] Charles C. Tappert, Ching Y. Suen, and Toru Wakahara. The state of the
art in online handwriting recognition. IEEE Transactions on pattern analysis
and machine intelligence, 12(8):787–808, 1990.
[24] Rene Vidal, Joan Bruna, Raja Giryes, and Stefano Soatto. Mathematics of
deep learning. arXiv preprint arXiv:1712.04741, 2017.
[25] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning
transferable architectures for scalable image recognition. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 8697–
8710, 2018.