簡易檢索 / 詳目顯示

研究生: 徐燕羚
論文名稱: 在FC空間上的弱F-S-KKM推廣型函數之交集定理及大中取小不等式
Intersection Theorems and Minimax Inequalities of Weakly F-S-KKM Mappings
指導教授: 張東輝 博士
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 15
中文關鍵詞: FC空間交集定理弱F-S-KKM 推廣型函數大中取小不等式
外文關鍵詞: FC-space, intersection theorem, generalized weakly F-S-KKM mapping, minimax inequality
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文證明一個在FC空間上的弱F-S-KKM推廣型函數的交集定理,利用這個定理證明了一些大中取小不等式的存在性定理。


    In this paper, we establish an intersection theorem of a weakly F-S-KKM mapping in FC-space. Apply this theorem, we get an existence theorem concerning generalized minimax inequalities. These results generalized many known results from the literature.

    CONTENTS 1. INTRODUCTION-------------------------------------------------5 2. PRELIMINARIES------------------------------------------------6 3. MAIN RESULTS--------------------------------------------------8 4. REFERENCES---------------------------------------------------13

    REFERENCES

    [1] J. P. Aubin and J. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.
    [2] M. Balaj, Weakly G-KKM mappings, G-KKM property, and minimax inequalities, J. Math.
    Anal. Appl. 294(2004), 237-245.
    [3] H. Ben-El-Mechaiekh, P. Deguire, and A. Granas, Points fixes et coincidences pour les functions multivoques II, C. R. Acad. Sci. Paris Ser. I 295(1982), 381-388.
    [4] K. C. Border, Fixed Point Theorems with Applications to Economics and Game Theory, Cambridge University Press, 1989.
    [5] S. S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159(1991), 208-233.
    [6] T. H. Chang and C. L. Yen, Generalized KKM theorem and its applications, Banyan Math.
    J. 3(1996), 21-28.
    [7] T. H. Chang and C. L. Yen, Generalized KKM property and fixed point theorems, J. Math. Anal. Appl. 203(1996), 224-235.
    [8] T. H. Chang, Y. Y. Huang, J. C. Jeng, K. W. Kuo, On S-KKM property and related topics, J.
    Math. Anal. Appl. 229(1999), 212 –227.
    [9] T. H. Chang, Y. Y. Huang, J. C. Jeng, Fixed-point theorems for multifunctions in S-KKM
    class, Nonl. Anal. 44(2001), 1007-1017.
    [10] P. Deguire and M. Lassonde, Familles selectantes, Topol. Methods Nonlinear Anal. 5(1995), 261-269.
    [11] P. Deguire, K. K. Tan, and G. X. Z. Yuan, The study of maximal elements, fixed point for -majorized mappings and their applications to minimax and variational inequalities in product topological spaces, Nonlinear Anal. 37(1999), 933-951.
    [12] X. P. Ding, Best approximation and coincidence theorems, J. Sichuan Normal Univ. Nat. Sci. 18(1995), 21-29.

    [13] X. P. Ding, Maximal element theorems in product and generalized games, J. Math. Anal. Appl. 305(2005), 29-42.
    [14] X. P. Ding, The Generalized game and system of generalized vector quasi-equilibrium problems in locally -umiform spaces, Nonl. Anal., in press.
    [15] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann.142(1961), 305-310.
    [16] K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266(1984), 519-537
    [17] B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunksatzes fur n-dimensionale simplexe, Fund. Math. 14(1929), 132-137.
    [18] M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97(1983), 151-201.
    [19] Y. L. Lee, G-S-KKM theorem and its applications, graduate Institute of Mathematics and Science, NHCTC, Hsin Chu, Taiwan. (2003).
    [20] L. J. Lin, and T. H. Chang, S-KKM theorems, asddle points and minimax inequalities, Nonl. Anal. TMA. 34(1998), 73-86.
    [21] F. J. Liu, On a form of KKM principle and supinfsup inequalities of von Neumann and Ky Fan type, J. Math. Anal. Appl. 155(1991), 420-436.
    [22] J. von Neumann, Uber ein okonomsiches Gleichungssystem und eine Verallgemeinering des Browerschen Fixpunktsatzes, Ergeb. Math. Kolloq. 8(1937), 73-83.
    [23] S. Park, Generalizations of Ky Fan’s matching theorems and their applications, J. Math. Anal. Appl. 141(1989), 164-176.
    [24] S. Park, Foudations of the KKM theory via coincidences of composites of upper semi-
    continuous maps, J. Korean Math. Soc. 31(1994), 164-176.
    [25] S. Park and H. Kim, Functions of the KKM theory on generalized convex spaces, J. Math. Anal. Appl. 209(1997), 551-571.

    [26] S. Park, Elments of the KKM theory for generalized convex spaces, Korean J. Comp. Appl. Math. 7(2000), 1-28.
    [27] S. Park, Remarks on topologies of generalized convex spaces, Nonlinear Funct. Anal. Appl. 5(2000), 67-79.
    [28] S. Park, Fixed point theorems in locally G-convex spaces, Nonlinear Anal. Appl. 48(2002), 869-879.
    [29] G. S. Tang , Q. B. Zhang and C. Z. Cheng, W-G-F-KKM mapping, intersection theorems and minimax inequalities in FC-space, J. Math. Anal. Appl. 334(2007), 1481-1491.
    [30] G. Q. Tina, Generalized KKM theorem, minimax inequalities and their applications, J. Optim. Theory Appl. 83(1994), 375-389.
    [31] Q. B. Zhang and C. Z. Cheng, Some fixed-point theorems and minimax inequalities in FC-space, J. Math. Anal. Appl. (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE