研究生: |
徐燕羚 |
---|---|
論文名稱: |
在FC空間上的弱F-S-KKM推廣型函數之交集定理及大中取小不等式 Intersection Theorems and Minimax Inequalities of Weakly F-S-KKM Mappings |
指導教授: | 張東輝 博士 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 15 |
中文關鍵詞: | FC空間 、交集定理 、弱F-S-KKM 推廣型函數 、大中取小不等式 |
外文關鍵詞: | FC-space, intersection theorem, generalized weakly F-S-KKM mapping, minimax inequality |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文證明一個在FC空間上的弱F-S-KKM推廣型函數的交集定理,利用這個定理證明了一些大中取小不等式的存在性定理。
In this paper, we establish an intersection theorem of a weakly F-S-KKM mapping in FC-space. Apply this theorem, we get an existence theorem concerning generalized minimax inequalities. These results generalized many known results from the literature.
REFERENCES
[1] J. P. Aubin and J. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.
[2] M. Balaj, Weakly G-KKM mappings, G-KKM property, and minimax inequalities, J. Math.
Anal. Appl. 294(2004), 237-245.
[3] H. Ben-El-Mechaiekh, P. Deguire, and A. Granas, Points fixes et coincidences pour les functions multivoques II, C. R. Acad. Sci. Paris Ser. I 295(1982), 381-388.
[4] K. C. Border, Fixed Point Theorems with Applications to Economics and Game Theory, Cambridge University Press, 1989.
[5] S. S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159(1991), 208-233.
[6] T. H. Chang and C. L. Yen, Generalized KKM theorem and its applications, Banyan Math.
J. 3(1996), 21-28.
[7] T. H. Chang and C. L. Yen, Generalized KKM property and fixed point theorems, J. Math. Anal. Appl. 203(1996), 224-235.
[8] T. H. Chang, Y. Y. Huang, J. C. Jeng, K. W. Kuo, On S-KKM property and related topics, J.
Math. Anal. Appl. 229(1999), 212 –227.
[9] T. H. Chang, Y. Y. Huang, J. C. Jeng, Fixed-point theorems for multifunctions in S-KKM
class, Nonl. Anal. 44(2001), 1007-1017.
[10] P. Deguire and M. Lassonde, Familles selectantes, Topol. Methods Nonlinear Anal. 5(1995), 261-269.
[11] P. Deguire, K. K. Tan, and G. X. Z. Yuan, The study of maximal elements, fixed point for -majorized mappings and their applications to minimax and variational inequalities in product topological spaces, Nonlinear Anal. 37(1999), 933-951.
[12] X. P. Ding, Best approximation and coincidence theorems, J. Sichuan Normal Univ. Nat. Sci. 18(1995), 21-29.
[13] X. P. Ding, Maximal element theorems in product and generalized games, J. Math. Anal. Appl. 305(2005), 29-42.
[14] X. P. Ding, The Generalized game and system of generalized vector quasi-equilibrium problems in locally -umiform spaces, Nonl. Anal., in press.
[15] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann.142(1961), 305-310.
[16] K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266(1984), 519-537
[17] B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunksatzes fur n-dimensionale simplexe, Fund. Math. 14(1929), 132-137.
[18] M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97(1983), 151-201.
[19] Y. L. Lee, G-S-KKM theorem and its applications, graduate Institute of Mathematics and Science, NHCTC, Hsin Chu, Taiwan. (2003).
[20] L. J. Lin, and T. H. Chang, S-KKM theorems, asddle points and minimax inequalities, Nonl. Anal. TMA. 34(1998), 73-86.
[21] F. J. Liu, On a form of KKM principle and supinfsup inequalities of von Neumann and Ky Fan type, J. Math. Anal. Appl. 155(1991), 420-436.
[22] J. von Neumann, Uber ein okonomsiches Gleichungssystem und eine Verallgemeinering des Browerschen Fixpunktsatzes, Ergeb. Math. Kolloq. 8(1937), 73-83.
[23] S. Park, Generalizations of Ky Fan’s matching theorems and their applications, J. Math. Anal. Appl. 141(1989), 164-176.
[24] S. Park, Foudations of the KKM theory via coincidences of composites of upper semi-
continuous maps, J. Korean Math. Soc. 31(1994), 164-176.
[25] S. Park and H. Kim, Functions of the KKM theory on generalized convex spaces, J. Math. Anal. Appl. 209(1997), 551-571.
[26] S. Park, Elments of the KKM theory for generalized convex spaces, Korean J. Comp. Appl. Math. 7(2000), 1-28.
[27] S. Park, Remarks on topologies of generalized convex spaces, Nonlinear Funct. Anal. Appl. 5(2000), 67-79.
[28] S. Park, Fixed point theorems in locally G-convex spaces, Nonlinear Anal. Appl. 48(2002), 869-879.
[29] G. S. Tang , Q. B. Zhang and C. Z. Cheng, W-G-F-KKM mapping, intersection theorems and minimax inequalities in FC-space, J. Math. Anal. Appl. 334(2007), 1481-1491.
[30] G. Q. Tina, Generalized KKM theorem, minimax inequalities and their applications, J. Optim. Theory Appl. 83(1994), 375-389.
[31] Q. B. Zhang and C. Z. Cheng, Some fixed-point theorems and minimax inequalities in FC-space, J. Math. Anal. Appl. (2006).