研究生: |
李志德 |
---|---|
論文名稱: |
生物法合成金屬奈米線 Biosynthesis of metal nanowires |
指導教授: |
譚世特
T. S. T. Tan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 30 |
中文關鍵詞: | 奈米線 、耐輻射奇異球菌 、生物法合成 、靜止期 |
外文關鍵詞: | nanowire, Deinococcus radiodurans, biosynthesis, stationary phase |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文在闡述利用耐輻射奇異球菌Deinococcus radiodurans 靜止期無菌培養基(cell free broth)來產生金屬銀奈米線。由實驗結果知:D. radiodurans 靜止期CFB 所產生金屬銀奈米線之產量(約2.5 x 105 wires / mL)與平均長度(約62.5 ±9.1 µm),均優於含菌菌液所生成之金屬銀奈米線(產量約3.5 x 103 wires / mL, 平均長度約38.3 ± 2.3 µm)。而D. radiodurans 生合成金屬銀奈米銀線能力,與其所處生長時期有關。由對數生長時期將轉入靜止期時,方始有銀線產生。但是此金屬銀奈米線生成能力可以利用加入0.01 % (v/v)之靜止期CFB 誘發出來。此外,CFB 之生成金屬銀奈米線能力對熱穩定,但在銀奈米線生成的反應過程中卻會受熱破壞;酸鹼值需為中性才能生成金屬銀奈米線。CFB 系統除了提供大量金屬銀奈米線,利於未來研究所需。透過了解影響該系統產生金屬銀奈米線的因子,更可以近一步了解D. radiodurans 細胞與細胞間的交互作用。
In this thesis, we use the CFB (cell free broth) of Deinococcus radiodurans stationary phase culture as a system to fabricate silver nanowire. After series of
experiments, we found that the amount of silver nanowires fabricated by D. radiodurans CFB (with 2.5 x 105 wires / mL, average length is about 62.5 ± 9.1 µm) are better than those fabricated by cell culture (with 3.5 x 103 wires / mL, average length is about 38.3 ± 2.3 µm). And the ability to fabricate silver nanowire is growth-phase dependent, emerging at late-log phase, and optimizing at stationary phase. Furthermore, the ability to fabricate silver nanowire could be induced by CFB ( 0.01%, v/v ). Besides that, we also found the CFB is heat-tolerance. But the reaction of silver nanowire synthesis is not heat stable, and must react under neutral pH. In conclusion, using CFB system to fabricate silver nanowire, could provide more silver nanowires for further research and development. And by studying the factors which influence the silver fabricated ability of CFB, could be a way to know more about cell-to-cell interaction of D. radiodurans.
1. Sheila R. Nicewarner-Peña, Anthony J. Carado, Kristen
E. Shale, and Christine D. Keating, Barcoded Metal
Nanowires: Optical Reflectivity and Patterned
Fluorescence, Journal of Physical Chemistry B 107 (2003)
7360-7367.
2. Mark S. Gudiksen, Lincoln J. Lauhon, Jianfang Wang,
David C. Smith, and Charles M. Lieber, Growth of
nanowire superlattice structures for nanoscale
photonics and electronics, Nature 396 (1998) 444-446.
3. Yewu Wang , Lide Zhang, Changhao Liang, Guozhong Wang &
Xinsheng Peng, Catalytic growth and photoluminescence
properties of semiconductor single-crystal ZnS
nanowires, Chemical Physics Letters 357 (2002) 314–318.
4. R. de Picciotto, H. L. Stormer, L. N. Pfeiffer, K. W.
Baldwin & K. W. West, Four-terminal resistance of a
ballistic quantum wire, Nature 411 (2001) 51-54.
5. Yu Huang, Xiangfeng Duan, Yi Cui, Lincoln J. Lauhon,
Kyoung-Ha Kim & Charles M. Lieber, Logic Gates and
Computation from Assembled Nanowire Building Blocks,
Science 294 (2001) 1313-1317.
6. E.C. Walter, K. Ng, M. P. Zach, R. M. Penner & F.
Favier, Electronic devices from electrodeposited metal
nanowires, Microelectronic Engineering 61–62 (2002)
555–561.
7. A. Delin & E. Tosatti, Emerging magnetism in platinum
nanowires, Surface Science 566–568 (2004) 262–267.
8. Z.L. Wang, R.P. Gao, P. Poncharal, W.A. de Heer, Z.R.
Dai & Z.W. Pan, Mechanical and electrostatic properties
of carbon nanotubes and nanowires, Materials Science and
Engineering C 16 (2001) 3–10.
9. Ling Pan, Kok-Keong Lew, Joan M. Redwing & Elizabeth C.
Dickey, Effect of diborane on the microstructure of
boron-doped silicon nanowires, Journal of Crystal Growth
277 (2005) 428–436.
10.Jennifer N. Cha, Galen D. Stucky, Daniel E. Morse &
Timothy J. Deming, Biomimetic synthesis of ordered
silica structures mediated by block copolypeptides,
Nature 403 (2000) 289-292.
11.Chuanbin Mao, Daniel J. Solis, Brian D. Reiss, Stephen
T. Kottmann, Rozamond Y. Sweeney, Andrew Hayhurst,
George Georgiou, Brent Iverson & Angela M. Belcher,
Virus-Based Toolkit for the Directed Synthesis of
Magnetic and Semiconducting Nanowires, Science 303
(2004) 213-217.
12.Mathias Balz, Helen A. Therese, Michael Kappl, Lutz
Nasdala,| Wolfgang Hofmeister, Hans-Jűrgen Butt &
Wolfgang Tremel, Morphosynthesis of Strontianite
Nanowires Using Polyacrylate Templates Tethered onto
Self-Assembled Monolayers, Langmuir 21 (2005) 3981-3986.
13.Zheng Wei Pan, Sheng Dai, Christopher M. Rouleau &
Douglas H. Lowndes, Germanium-Catalyzed Growth of Zinc
Oxide Nanowires: A Semiconductor Catalyst for Nanowire
Synthesis, Angewandte Chemie International Edition 44
(2005) 274-278
14.Tobias Hanrath & Brian A. Korgel, Nucleation and Growth
of Germanium Nanowires Seeded by Organic Monolayer-
Coated Gold Nanocrystals, Journal of the American
Chemical Society 124 no.7 (2002) 1424-1429.
15.Zongtao Zhang, Douglas A. Blom, Zheng Gai, James R.
Thompson, Jian Shen & Sheng Dai, High-Yield
solvothermal Formation of Magnetic CoPt Alloy
Nanowires, Journal of the American Chemical Society 125
no.25 (2003) 7528-7529.
16.Peng Jiang, Shun-Yu Li, Si-Shen Xie, Yan Gao & Li Song,
Machinable Long PVP-Stabilized Silver Nanowires,
Chemistry - A European Journal 10 (2004) 4817- 4821.
17.Guanying Cao, Chunnuan Ye, Fang Fang, Xiaoyan Xing,
Huahua Xub, Dalin Sun & Guorong Chen, Crystalline quasi-
one-dimensional Ag–TCNQ micro/nanostructures
synthesized by solution reaction, Materials Science and
Engineering B 119 (2005) 41–45.
18.Ying-Jie Zhu & Xian-Luo Hu, Microwave-assisted
polythiol reduction method: a new solid–liquid route to
fast preparation of silver nanowires, Materials Letters
58 (2004) 1517– 1519.
19.K. Onushi, T. Kumakura & D. Fujita, Nanostructure
fabrication for future nanodevices using a scanning
tunneling microscope, Superlattices and Microstructures
32 no.4–6 (2002) 249-253.
20.Laura Mazzola, Commercializing nanotechnology, Nature
biotechnology 21 (2003) 1137-1143.
21.Fredrickson, J. K. et al., Reduction of Fe(III), Cr(VI),
U(VI), and Tc(VII) by Deinococcus radiodurans R1.
Application of Environmental Micobiology 66 (2000) 2006-
2011.
22.Chou, F. I. & Tan, S. T., Salt-mediated multicell
formation in Deinococcus radiodurans. Journal of
Bacteriology 173 (1991) 3184-3190.
23.Chou, F. I. & Tan, S. T. Manganese(II) induces cell
division and increases in superoxide dismutase and
catalase activities in an aging deinococcal culture.
Journal of Bacteriology 172 (1990) 3184-3190.
24.John C March and William E Bentley, Quorum sensing and
bacterial cross-talk in biotechnology, Current Opinion
in Biotechnology 15 (2004) 495–502.
25.Dunny, G. M. Cell-cell communication in Gram-positive
bacteria. Annual Review of Microbiology 51 (1997) 527-
564.
26.Parsek, M. R. & Greenberg, E. P. Acyl-homoserine lactone
quorum sensing in Gram-negative bacteria: a signaling
mechanism involved in associations with higher
organisms. Proceedings of the National Academy of
Sciences of the USA 97 (2000) 8789-8793.
27.Sandra Castang, Bernard Chantegrel, Christian Deshayes,
Rene’olmazon, Patrice Gouet, Richard Haser, Sylvie
Reverchon, William Nasser, Nicole Hugouvieux-
Cotte-Pattat and Alain Doutheaub, N-Sulfonyl homoserine
lactones as antagonists of bacterial quorum sensing,
Bioorganic & Medicinal Chemistry Letters 14 (2004) 5145– 5149.
28.Hardman, A. M., Stewart, G. S. A. B. & Williams, P.
Quorum sensing and the cell-cell communication dependent
regulation of gene expression in 24 pathogenic and non-
pathogenic bacteria. Antonie Van Leeuwenhoek 74 (1998)
199-210.
29.Rosemary J. Redfield, Is quorum sensing a side effect of
diffusion sensing? TRENDS in Microbiology Vol.10 No.8
August (2002) 365-370.
30.G. Dirix, P. Monsieurs, B. Dombrecht, R. Daniels, K.
Marchal, J. Vanderleyden, J. Michiels,. Peptide signal
molecules and bacteriocins in Gram-negative bacteria: a
genome-wide in silico screening for peptides containing a
double-glycine leader sequence and their cognate
transporters, Peptides 25 (2004) 1425–1440.
31.Zhenghua Wang, Jianwei Liu, Xiangying Chen, Junxi Wan,
and Yitai Qian, A Simple Hydrothermal Route to Large-
Scale Synthesis of Uniform Silver Nanowires, Chemistry -
A European Journal Vol. 11 (2005) 160 – 163.