簡易檢索 / 詳目顯示

研究生: 黃文忠
Wen-Chung Huang
論文名稱: 高穿透率之液體透鏡光閥
High Transmission Light Valve Based on Tunable Liquid Lens
指導教授: 葉哲良
Jer-Liang Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 97
中文關鍵詞: 光閥高穿透率液體透鏡
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前用於投影技術的光閥(Light Valve)元件主要可分為穿透式與反射式元件,穿透式液晶顯示面板(LCD)是目前最主要的穿透式光閥元件,相較於反射式光閥元件(LCOS、DMD、GLV)其光利用率太差,通常不到10%。相反地,從光路系統設計上來考量,穿透式光閥較反射式光閥更好設計,也就是光路設計上更為簡單。但穿透式液晶投影顯示器因為投影亮度的關係,現在多為三片式液晶投影顯示器,除了增加光路系統的複雜性外,也因此無法做出輕巧的光學系統。
    所以本論文提出一種穿透式的光閥元件-液體透鏡光閥,預期擁有高穿透率與高對比度。由於是穿透式的光閥元件,光路設計較為直觀,所以更容易將整體光路系統做得更為輕巧與簡單。而本研究主要使用可調變焦距之液體透鏡來做為一個光路開關的元件,當光線經過透鏡能改變其透射光之強度分佈,再藉由遮光元件(針孔遮光與圓環遮光)來形成光路的亮態與暗態,產生對比。目前實驗結果顯示液體透鏡光閥的穿透率可達70%,對比度最大為40:1。也顯示出其液體透鏡光閥的高穿透率是值得被注意的,在光學系統上的發展更多元化。


    摘 要 I 致 謝 II 目 錄 III 圖 目 錄 VI 表 目 錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 投影顯示種類 5 1.2.1 穿透式光路系統架構 6 1.2.2 反射式光路系統架構 9 1.3 變焦液體透鏡簡介 19 1.4 研究動機與目標 20 1.5 全文架構 21 第二章 基本理論與系統設計 22 2.1 液體透鏡架構 22 2.1.1基本組成 22 2.1.2介電力與平行板電極 24 2.2 透鏡成像原理 26 2.3 yun光線追跡法(近軸光線追跡) 30 2.4 光學系統設計原理 33 第三章 光學模擬與電場模擬 36 3.1光學模擬分析 36 3.1.1 針孔(Pinhole)遮光系統 38 3.1.2 圓環(Ring)遮光系統 40 3.1.3 模擬結果分析 41 3.2 平行板電極的電場模擬 44 第四章 液珠陣列與遮光元件的製作方式 48 4.1 初步的測試實驗 48 4.2 圓盤與圓環結構層 53 4.3 結合圓盤與圓環的雙結構層 57 4.4 遮光層的原理與製作 64 第五章 實驗量測與結果討論 66 5.1 反應時間量測 67 5.2 焦距與對比量測 71 5.3 光穿透率量測 76 5.4 實驗結果討論 81 第六章 結論與未來展望 83 6.1結論與未來展望 83 參 考 文 獻 86 附 錄 90

    [1] J. P. Boeuf, “Plasma display panels: physics, recent developments and key issues”, Journal of Physics D: Applied Physics, Vol. 36, pp.53-79, 2003
    [2] L. S. Liao, K. P. Klubek, and C. W. Tang, “High-efficiency tandem organic light-emitting diodes”, Applied Physics Letters, Vol. 84, pp.167-169, 2004
    [3] V. E. Choong, S. Shi, J. Curless, C. L. Shieh, H.C. Lee, and F. So, “Organic light-emitting diodes with a bipolar transport layer”, Applied Physics Letters, Vol. 75 , pp.172-174, 1999
    [4] B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays”, Nature, Vol. 394, pp.253-255, 1998
    [5] P. T. Kazlas, and M. D. McCreary, “Paperlike microencapsulated electrophoretic materials and displays”, Mrs Bulletin Materials Research Society, Vol. 27, pp.894-897, 2002
    [6] R. A. Hayes, and B. J. Feenstra, “Video-speed electronic paper based on electronwetting”, Nature, Vol. 425, pp.383-385, 2003
    [7] J. Heikenfeld, and A. J. Steckl, “High-transmission electrowetting light valves”, Applied Physics Letters, Vol. 86, pp.151121, 2005
    [8] J. Heikenfeld, and A. J. Steckl, “Demonstration of fluorescent RGB electrowetting devices for light wave coupling displays”, Heikenfeld – EL, 2004
    [9] M. N. Ernstoff, A. M. Leupp, M. J. Little, and H. T. Peterson, “Liquid crystal pictorial display“, International Electron Devices Meeting, Technical Digest, Wash. D. C. USA, pp.548-551, 1973
    [10] M. Hayakawa, “ILA/D-ILA秪□ Super projectors for the present and the future”, Victor Company of Japan, Limited (JVC), 2000
    [11] F. Tatsumi, S. Moriya, and Y. Ishizaka, “Optical system using 3 pieces of D-ILA panel module”, Proceedings of the International Display Workshops, pp.753, 1998
    [12] W. P. Bleha, “D-ILATM Projector technology: The path to high resolution projection displays“, DILAP Technology -SPIE or SID, 1998
    [13] http://www.pida.org.tw/welcome.asp
    [14] L. J. Hornbeck, “Digital light processing and MEMS reflecting the digital display needs of the networked society”, Proceedings of SPIE, Vol. 2783, 1996
    [15] P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display”, Proceedings of the IEEE, Vol. 86, pp.1687-1704, 1998
    [16] L. Hornbeck, “Digital light processingTM: A new MEMS-based sisplay technology”, Technical Digest of the IEEJ 14th Sensor Symposium, 1996
    [17] J. M. Florence, R. Miller, and T. A. Bartlett, “Contrast ratio in DMD-based projection systems,” Proceedings of SID, Boston, MA, pp.920-922, 1997
    [18] O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, “Deformable grating optical modulator”, Optics Letters, Vol. 17, pp4900-4907, 1992
    [19] A. Payne, W. DeGroot, R. Monteverde, and D. Amm, “Enabling high-data-rate imaging applications with grating light valveTM technology”, Proceedings of SPIE, Vol. 5348(SPIE, Bellingham, WA), 2004
    [20] R. W. Corrigan, D. T. Amm, and C. S. Gudeman, “Grating light valve technology for projection displays”, Silicon Light Machines, Sunnyvale, CA, Presented at the International Display Workshop, Kobe Japan, Paper Number LAD5-1, 1998
    [21] D. I. Amni, and R. W. Corrigan, “Optical performance of the grating light valve technology”, Silicon Light Machines, Sunnyvale CA 94089, Part of the IS&T/SPIE Conference on Projection Displays V. San Jose, California, SPIE, Vol. 3634, 1999
    [22] D. Bloom, “The grating light valve: Revolutionizing display technology”, Projection Displays III Symposium, Proceedings of SPIE, Vol. 3013, 1997
    [23] C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens”, Optics Express, Vol. 14, pp.4101-4106, 2006
    [24] C. C. Cheng, C.H. Liu, and J. Andrew Yeh, “A liquid crystal droplet lens driven by dielectric Force”, IEEE, pp. 100-101, 2006
    [25] C. C. Cheng, and J. A. Yeh, “Dielectrically actuated liquid lens”, Optics Express, Vol. 15, pp.7140-7145, 2007
    [26] A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “Ac electrokinetics: A review of forces in microelectrode structures”, Journal of Physics D: Applied Physics, Vol. 31, pp.2338-2353, 1998
    [27] N. G. Green, A. Ramos, A. Gonzalez, A. Castellanos, and H. Morgan, “Rapid communication electric field induced fluid flow on microelectrodes: The effect of illumination”, Journal of Physics D: Applied Physics, Vol. 33, pp.13-17, 2000
    [28] J. W. Goodman, Introduction to Fourier optics, Ch.5-3, McGraw-Hill, San Francisco, 1968
    [29] 陳立舜,“液體透鏡光軸定心”,國立清華大學動力機械所碩士論文,2006
    [30] 鄭至成,“介電液體變焦透鏡”,國立清華大學微機電所博士論文,2006

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE