簡易檢索 / 詳目顯示

研究生: 吳宗翰
Wu, Zhong-Han
論文名稱: 基於Shamir的(k,n)門檻值之影像分享及還原
Image Sharing and Recovering Based on Shamir’s (k,n) threshold scheme
指導教授: 陳朝欽
Chen, Chaur-Chin
口試委員: 張隆紋
Chang, Long-Wen
賴尚宏
Lai, Shang-Hong
學位類別: 碩士
Master
系所名稱:
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 19
中文關鍵詞: 門檻值影像分享影像還原
外文關鍵詞: Shamir, Lagrange interpolation, Vandermonde matrix
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於科技日新月異的發展,高機密資料的傳輸已經成為一個備受重視的議題。如何在分享過程中避免遭受到惡意的攻擊,是在資訊安全上一個重大的挑戰。影像分享是一個典型的保密技術,分配者將秘密影像分成n張子影像並且把子影像分配給n個參與者,我們可以透過從中蒐集至少k張子影像,還原出秘密影像,但是在少於k張子影像的情況,是無法獲得足夠的資訊來進行還原的。
    在此篇論文中,我們提出一套新的方法來實作Thien和Lin根據Shamir的(k,n)門檻值所提出的應用。此方法最主要的優點在於使用了Vandermonde matrix來取代Lagrange interpolation,減少了要解出多項式中係數值的計算複雜度。此外,在使用傳統的Shamir門檻值架構時,我們解決了實際可能造成的精確度失準,並且由我們的步驟也可以消除由Lagrange interpolation所引起的謬誤。在(4,6)的門檻值設定之下,實驗結果顯示提出的方法能完整的還原出秘密影像。


    Due to the rapid development of technology, a transmission of highly sensitive data has become an attentional issue. How to avoid malicious attacks during sharing phase is a substantial challenge in information security. Image sharing is a typical technique to protect secret image that the dealer divides the secret image into n shadow images and distributes them to n participants such that by collecting k of them can recover the secret image. Fewer than k shadow images would not be sufficient to reveal the secret image.
    We propose a new method to implement the Thein and Lin’s application based on Shamir’s (k,n) threshold scheme in this thesis. The advantage of our method is that we reduce the computational complexity by replacing Lagrange interpolation with Vandermonde matrix to figure out the coefficients located in the polynomial in the sharing phase. In addition to this benefit, we come out the fact that we encounter the possible loss of precision by making use of traditional Shamir’s (k,n) threshold scheme, and our process could eliminate the fallacy generated by Lagrange interpolation. Experimental results of (4,6) threshold show that the proposed method can completely recover the secret image.

    Chapter 1 Introduction 1 Chapter 2 Background Review 3 2.1 The Samir’s (k,n) threshold scheme [Sham1979] 3 2.1.1 Lagrange interpolation [Web 02] 5 2.2 Chinese Remainder Theorem [Web 03] 6 Chapter 3 Proposed Method 9 3.1 Proposed Image Sharing Method 11 3.2 Proposed Image Recovering Method 11 3.3 Time Complexity Analysis 12 Chapter 4 Experimental Results 13 Chapter 5 Conclusion 17 References 18

    [Asmu1983] C. Asmuth and J. Bloom, “A Modular Approach to Key Safeguarding,” IEEE Trans. on Information Theory, Vol. 29, No. 2, 208-210, 1983.
    [Blak1979] G.R. Blakley, “Safeguarding cryptographic keys,” Proceedings of the National Computer Conference, American Federation of Information Proceeding Societies, Vol. 48, 313-317, 1979.
    [Chua2016] T.W. Chuang, C.C. Chen, and Y.L. Chien, “Image Sharing and Recovering Based on Chinese Remainder Theorem”, IEEE International Symposium on Computer, Consumer, and Control, 817-820, Xi'an, China, July 4-6, 2016.
    [Sham1979] A. Shamir, "How to share a secret." Communications of the ACM, Vol. 22, No. 11, 612-613, 1979.
    [Shyu2008] S.J. Shyu and Y.R. Chen, "Threshold secret image sharing by Chinese Remainder Theorem." IEEE Asia-Pacific Services Computing Conference, 1332-1337, 2008.
    [Thie2002] C.C. Thien and J.C. Lin, “Secret image sharing,” Computer & Graphics, Vol. 26, No. 1, 765-771, 2002.
    [Tsai2013] M.H. Tsai and C.C. Chen, “A Study on Secret Image Sharing,” The Sixth International Workshop on Image Media Quality and Its Applications, Tokyo, Japan, 135-139, 2013.
    [Ulut2009] M. Ulutas, V.V. Nabiyev, and G. Ulutas, "A New Secret Image Sharing Technique Based on Asmuth Bloom's Scheme." Application of Information and Communication Technologies, 1-5, 2009.
    [Web01] https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing, last access on May 20, 2017.
    [Web02] https://en.wikipedia.org/wiki/Lagrange_polynomial, last access on May 20, 2017.
    [Web03] https://en.wikipedia.org/wiki/Chinese_remainder_theorem, last access on May 20, 2017.
    [Web04] https://en.wikipedia.org/wiki/Secret_sharing_using_the_Chinese_remainder_theorem, last access on May 20, 2017.

    QR CODE