簡易檢索 / 詳目顯示

研究生: 蘇林捷
Jie, Su-Lin
論文名稱: 在半導體光學放大器交互增益壓縮機制中波長保持全光式二重訊號重建系統之功率效能改良
Power Efficiency Improvement of a Wavelength-preserved All Optical 2R Regeneration System in an SOA-based Optical Cross-gain Compression Mechanism
指導教授: 馮開明
Feng, Kai-Ming
口試委員: 劉文豐
Liu, Wen-Fung
彭朋群
Peng, Peng-Chun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 74
中文關鍵詞: 全光式訊號重建半導體光學放大器交互增益壓縮交互增益調變波長保持
外文關鍵詞: All Optical Signal Regeneration, SOA, XGC, XGM, Wavelength-preserved
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今大量成長的資料傳輸量刺激了光通訊的發展,比起傳統電纜傳輸,光通訊擁有通信容量大、中繼距離長、不受電磁干擾、製作材料資源豐富、重量輕、體積小等眾多優勢,因此被列為世界各先進國家積極發展的目標之一。但由於光訊號傳遞過程中,可能會產生雜訊以及色散等劣化現象,造成訊號判讀錯誤率上升,訊號處理所扮演的腳色相當重要。既有的做法是先將基地台的失真光訊號轉成電訊號進行重建之後,再轉回光訊號傳輸到用戶端。但隨著光通訊系統的積極發展,全光式訊號重建(All Optical Signal Regeneration)的技術發展提升將左右全光式網路建置的實際與完備。

    然而,現有全光式訊號重建的方法大多存在系統複雜度高、功率效能表現不佳、波長轉換或是嚴重的啁啾現象等問題。因此,本論文提出一個新穎的二重訊號重建系統,首先透過半導體光學放大器(Semiconductor Optical Amplifier, SOA)進行交互增益調變(Cross-gain Modulation, XGM)產生一組邏輯反向訊號。再搭配放大過後的原始訊號進行交互增益壓縮(Cross-gain Compression, XGC),大幅度地簡化架構、提升功率效能以及減少啁啾現象(Frequency Chirping)與過調現象(Overshoot),恢復經過50 km光纖傳輸後劣化的訊號品質,成功達成訊號重建的目的。

    以下將首先介紹訊號重建的基本概念,並針對各種方法的機制與特性進行綜合比較。接著探討以半導體光學放大器為基礎,採取反向傳播(Counter-propagating)之交互增益調變的原理,並解說藉由搭配交互增益壓縮,改善啁啾現象與過調現象以達成全光式訊號重建的方法。其中特別針對半導體光學放大器對原始訊號的放大、邏輯反向訊號生成、系統光路匹配以及訊號重建等重點依序解說。最後分別進行10 Gb/s與40 Gb/s訊號重建之結果討論。


    誌謝 摘要 目錄 圖表列表 第一章 緒論   1.1 簡介   1.2 研究動機   1.3 論文架構 第二章 全光式訊號重建技術   2.1 訊號重建     2.1.1 訊號重建之目的     2.1.2 訊號重建之工作內容   2.2 相關技術回顧     2.2.1 自相位調變法訊號重建     2.2.2 飽和吸收法訊號重建     2.2.3 四波混頻法訊號重建     2.2.4 限制放大法訊號重建     2.2.5 交互增益調變法訊號重建     2.2.6 綜合分析 第三章 本研究操作原理介紹   3.1 半導體光學放大器   3.2 邏輯反向訊號生成   3.3 光路長度匹配   3.4 交互增益壓縮 第四章 全光式訊號重建系統   4.1 實驗架構   4.2 實驗成果     4.2.1 半導體光學放大器工作區     4.2.2 放大原始訊號品質     4.2.3 邏輯反向訊號品質     4.2.4 光路長度匹配     4.2.5 訊號重建 第五章 40 Gb/s訊號重建效果探討   5.1 實驗架構   5.2 實驗成果     5.2.1 原始訊號品質     5.2.2 放大原始訊號品質     5.2.3 邏輯反向訊號品質 第六章 結論   6.1 成果與討論   6.2 未來研究方向 參考文獻

    [1]David Cohen, "Record-breaking optical fibers for global communications," Technology Review, TR 35, 2011
    [2]Mamyshev, P.V.; , "All-optical data regeneration based on self-phase modulation effect," Optical Communication, 1998. 24th European Conference on , vol.1, no., pp.475-476 vol.1, 20-24 Sep 1998.
    [3]Contestabile, G.; Maruta, A.; Sekiguchi, S.; Morito, K.; Sugawara, M.; Kitayama, K.; , "Regenerative Amplification by Using Self-Phase Modulation in a Quantum-Dot SOA," Photonics Technology Letters, IEEE , vol.22, no.7, pp.492-494, April1, 2010
    [4]Dahdah, N.E.; Charbonnier, B.; Coquille, R.; Joindot, M.; Pincemin, E.; , "All-optical 2R regenerative wavelength conversion of 40 Gbit/s RZ data using electro-absorption modulator with shifted band-pass filter," Optical Communication, 2005. ECOC 2005. 31st European Conference on , vol.3, no., pp. 363- 364 vol.3, 25-29 Sept. 2005
    [5]Shah, N.S.M.; Matsumoto, M.; , "2R Regeneration of Time-Interleaved Multiwavelength Signals Based on Higher Order Four-Wave Mixing in a Fiber," Photonics Technology Letters, IEEE , vol.22, no.1, pp.27-29, Jan.1, 2010
    [6]Su, Y.; Wang, L.; Agarwal, A.; Kumar, P.; , "All-optical limiter using gain flattened fibre parametric amplifier," Electronics Letters , vol.36, no.13, pp.1103-1105, 22 Jun 2000
    [7]Ribeiro, N.S.; Gallep, C.M.; Conforti, E.; , "Wavelength conversion and 2R-regeneration using one semiconductor optical amplifier with cross-gain modulation compression," Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. Conference on , vol., no., pp.1-2, 4-9 May 2008
    [8]Govind P. Agrawal, Chapter 10 in “Nonlinear Fiber Optics” 4th ed., 2007 Academic Press.
    [9]B. E. A. Saleh, M. C. Teich, Chapter 21 in “Fundamental Of Photonics” 2nd ed., 2007 Wiley.
    [10]Vivero, T.; Calabretta, N.; Monroy, I.T.; CarvalhoKassar, G.; Ohman, F.; Yvind, K.; Gonzalez-Marcos, A.; Mork, J.; , "10 Gb/s-NRZ Optical 2R-Regeneration in Two-Section SOA-EA Chip," Lasers and Electro-Optics Society, 2007. LEOS 2007. The 20th Annual Meeting of the IEEE , vol., no., pp.806-807, 21-25 Oct. 2007
    [11]Michael J. Connelly, Chapter 2-3 in “Semiconductor Optical Amplifiers” 2002 Kluwer Academic Publishers.
    [12]Joseph T. Verdeyen, “Laser Electronics” International ed., Prentice Hall.
    [13]Kelin Kuhn, “Laser Engineering” Prentice Hall.
    [14]Contestabile, G.; , "All-optical signal regeneration using SOAs, Communications and Photonics Conference and Exhibition (ACP), 2010 Asia , vol., no., pp.7-8, 8-12 Dec. 2010
    [15]D'Errico, A.; Contestabile, G.; Proietti, R.; Presi, M.; Ciaramella, E.; Bramerie, L.; Gay, M.; Lobo, S.; Joindot, M.; Simon, J.C.; Massoubre, D.; Nguyen, H.T.; Oudar, J.-L.; , "2R Optical Regeneration combining XGC in a SOA and a Saturable Absorber," Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on , vol., no., pp.1-3, 24-28 Feb. 2008
    [16]Contestabile, G.; Proietti, R.; Calabretta, N.; Ciaramella, E.; , "Cross-Gain Compression in Semiconductor Optical Amplifiers," Lightwave Technology, Journal of , vol.25, no.3, pp.915-921, March 2007
    [17]Gavioli, G.; Bayvel, P.; , "Investigation of 43-Gb/s Transmission With a Wavelength Preserving SOA-Based Optical Regenerator," Photonics Technology Letters, IEEE , vol.21, no.14, pp.1014-1016, July15, 2009

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE