簡易檢索 / 詳目顯示

研究生: 康琨永
Kun-yung Kang
論文名稱: 漏電流對金屬/鐵電層/絕緣層/矽結構電容和場效應電晶體記憶保持力的影響
The effect of leakage current on retention time of Metal-Ferroelectric-Insulator-Silicon(MFIS) Capacitors and Field-Effect Transistors
指導教授: 李雅明
Joseph Ya-Min Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 123
中文關鍵詞: 鐵電記憶體
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本次實驗中我們成功製作了金屬(Al)/鐵電薄膜(PZT)/絕緣層(ZrO2)/半導體(p-type)電容器及廠效應電晶體。利用了dilute HCl 的表面處理方法去頓化ZrO2/Si 的表面並降低漏電流。本實驗中,我們使用射頻磁控濺鍍法沈積(氧化鋯)ZrO2薄膜,並於沈積前後分別利用H2O2及dilute HCl進行表面處理,之後將其製成金屬(Al)/鐵電薄膜(PZT)/絕緣層(ZrO2)/半導體(p-type)電容器及廠效應電晶體。
    在電容量測方面,我們發現在經過前後處理過的電容,其漏電流在5V時可以降地到5.4x10-6 A/cm2 。而在電容的記憶保持力方面,經過前後處理過的電容,其記憶保持力可以從13.3小時進步到17.1天。而電容在8V時其記憶窗可以到達最大0.7V。
    在場效應電晶體方面,其閘極漏電流在5V可以降低至5X10-6 A/cm2。而電晶體的電子遷移率可以到達267 cm2/V-s。而電晶體的次臨界斜率可以改善到106 mV/dec。而在電晶體記憶保持力方面,我們發現在3000秒後臨界電壓的記憶窗可以達到1.1V,顯示出記憶保持力有很大的改善,推測原因是因為閘極漏電流的降低。


    Abstract
    Al/ Pb (Zr0.53, Ti0.47) O3 (PZT) /ZrO2/Si metal-ferroelectric-insulator semiconductor (MFIS) capacitors and transistors were fabricated. A surface treatment method was used to passivate ZrO2/Si interface and to reduce the leakage current. The wafers were given a H2O2 pre-treatment before ZrO2 deposition and a HCl treatment after deposition.
    The leakage current density of Al/PZT/ZrO2/Si capacitors was improved to 5.4x10-6 A/cm2 at a sweep voltage of 5 V. The retention time of Al/PZT/ZrO2/Si capacitors after these surface treatments was increased from 13.3 hours to 17.1 days. The largest memory window of 0.7 V was obtained at a sweep voltage of 8 V.
    The gate leakage current density of FeFETs at 5 V was reduced to 5x10-6 A/cm2. The electron mobility is 267 cm2/V-s. The subthreshold slope was improved to 106 mV/dec. The FeFETs maintain a threshold voltage window of about 1.1 V after an elapsed time of 3000 sec. The improved retention time is attributed to the reduced gate leakage current.

    目 錄 第一章 緒論 1.1非揮發性記憶體簡介 1.2 動態隨機存取記憶體的簡介 1.3 鐵電材料的特徵 1.4鐵電材料鋯鈦酸鉛在記憶體上的應用 1.5 鐵電材料於FRAM的發展現況 1.6 MFIS結構的應用 1.7本論文研究方向 第二章 鋯鈦酸鉛(PZT)的物理分析 2.1 鐵電材料的結構 2.2 鐵電材料的電滯曲線 2.3 鐵電材料的極化轉換理論 2.4 鐵電薄膜的電性 2.5 鐵電材料的可靠度 第三章 金屬(Al)/鐵電薄膜/(PZT)/絕緣體(ZrO2)/半導體 電晶體與電容的製備 3.1 設備與製程 3.2射頻磁控濺鍍法的簡介 3.3 MFIS薄膜電容器的製備 3.3.1基板及絕緣層的製作 3.3.2 Pre-H2O2 treatment 3.3.3 ZrO2薄膜的成長 3.3.4 Post-HCL treatment 3.3.5 PZT 薄膜的製作 3.3.6上下電極的製作 3.4 MFIS薄膜電晶體的製備 3.5 蝕刻上遭遇到的問題 3.6製作問題分析 3.7 注意事項 第四章 金屬(Al)╱鐵電薄膜(PZT)╱絕緣層(ZrO2)╱半導體 結構的基本物性分析 4.1 X-ray 繞射 (XRD)分析 4.2 二次離子縱深質譜儀 (SIMS)分析 4.3 傅立葉轉換紅外線光譜儀(FTIR)之分析 第五章 金屬(Al)╱鐵電薄膜(PZT)╱絕緣層(ZrO2) ╱半導體 電容器的特性 5.1 MFIS結構的優缺點 5.2 MFIS電容的操作原理 5.3四種氧化層電荷對氧化層薄膜的貢獻 5.4 MFIS電容在不同介面處理下漏電流討論 5.5 MFIS電容-電壓(C-V)曲線的基本量側 5.6 MFIS C-V曲線飄移與走向的探討 5.7 MFIS能帶圖對平帶電壓偏移的探討 5.8 MFIS電容的記憶保持力 第六章 金屬(Al)╱鐵電薄膜(PZT)╱絕緣層(ZrO2)╱半導體 場效電晶體的特性量測 6.1 MFIS場效電晶體的操作原理 6.2 MFIS場效電晶體的基本電性量測 6.2.1 IDS-VDS Curve的特性 6.2.2 臨界電壓(Threshold Voltage VT 6.2.3 次臨界斜率(Sub-threshold Slope 6.2.4 遷移率的探討(Mobility 6.3 電晶體的記憶體效應 6.4電晶體的記憶保持力(retention time 6.4.1記憶保持力的影響因素 6.4.2記憶保持力的量測探討 第七章 結論 參考文獻 圖表

    Reference
    第一章
    ﹝1﹞ P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, “Flash Memories. Kluwer Academic,” 2000.
    ﹝2﹞ J. F. Scott, “Ferroelectric Memories.” Berlin, Germany: Springer-Verlag, 2001.
    ﹝3﹞ 賴明駿, “極大型積體電路之鐵電材料”, 電子月刊, 第五卷第六期, p. 94. 1996.
    ﹝4﹞ B. W. Shen, G. Chung, I. C. Chen, D. J. Coleman, P. S. Ying, R. McKee, M. Yashiro, and C. W. Teng, “Scalability of a trench capacitor cell for 64 Mbit.,” IEDM Tch. Dig., pp. 27, 1989.
    ﹝5﹞ 何彬明, “FeRAM產品化的崎嶇道路,” 電子月刊, 第五卷第三期, p.166. 1996.
    ﹝6﹞ T. Eimori and B. Desu, “A newly designed planar stacked capacitor cell with high dielectric constant film for 256Mbit DRAM,” IEEE IEDM, pp. 631-634, 1993.
    ﹝7﹞ T. Sumi and P. D. Maniar, “Ferroelectric nonvolatile memory technology and its applications,” Jpn. J. Appl. Phys., vol. 35, no. 2B, pp. 1516-1520, 1996.
    ﹝8﹞ S. L. Miller and P. J. McWhorter, “Physics of the ferroelectric nonvolatile memory field effect transistor,” J. Appl. Phys., vol. 72, no. 12, pp. 5999-6010, 1992.
    ﹝9﹞ R. Moazzami, C. Hu, and W.H. Shepherd, “A ferroelectric DRAM cell for high-density NVRAM’s,” IEEE Electron Device Lett., vol. 11, pp. 454-456, 1990.
    ﹝10﹞ 李雅明, 吳世明, 陳宏名, “鐵電記憶元件”, 電子月刊, 9月號, 1996.
    ﹝11﹞ S. Sinharoy, H. Buhay, D. R. Lampe, and M. H. Francombe, “Integration of ferroelectric thin films into nonvolatile memories,” Journal of Vacuum Science & Technology A., vol. 10, no. 4, pp. 1554-1561, 1992.
    ﹝12﹞ T. Nakamur and Y. Fujimor, “Fabrication technology of ferroelectric memories,” Jpn. J. Appl. Phys., vol. 37, part. 1, no. 3B, pp. 1325-1327, 1998.
    ﹝13﹞ K. H. Kuo and M. J. Sun, “Metal-ferroelectric-semiconductor (MFS) FET’s using LiNbO3/Si (100) structures for nonvolatile memory Application,” IEEE Electron Device Lett., vol. 19, no. 6, pp. 204-206, 1998.
    ﹝14﹞ K. Sugibuchi, Y. Kurogi, and N. Endo, “Ferroelectric field-effect memory device using Bi4Ti3O12 film,” J. Appl. Phys., vol. 46, no. 7, pp. 2877-2881, 1975.
    ﹝15﹞ N. A. Basit and H. K. Kim, “Growth of highly oriented Pb(Zr,Ti)O3 films on MgO-buffered oxidized Si Substrates and its application to ferroelectric nonvolatile memory field-effect transistors ,” Appl. Phys. Lett., vol. 73, no. 26, pp. 3941-3943, 1998.
    ﹝16﹞ H. N. Lee, M. H. Lim, and Y. T. Kim, “Characteristics of metal/ferroelectric/insulator/semiconductor field effect transistors using a Pt/SrBi2Ta2O9 /Y2O3 /Si structure,” Jpn. J. Appl. Phys., vol. 37, part 1, no. 3B, pp. 1107-1109, 1998.
    ﹝17﹞ T. Hirai, Y. Fujisaki, and K. Nagashima, “Preparation of SrBi2Ta2O9 film at low temperatures and fabrication of a metal/ferroelectric /insulator/semiconductor field transistor using Al/SrBi2Ta2O9/CeO2/Si (100) structures,” Jpn. J. Appl. Phys., Vol. 36, Part 1, no. 9B, pp. 5908-5911, 1997.
    ﹝18﹞ T. P. Ma and J. P. Han, “Why is nonvolatile ferroelectric memory field-effect transistor still elusive,” IEEE Electron Device Letters, vol. 23, no. 7, pp. 386-388, 2002.
    ﹝19﹞ K. Aizawa, B. E. Park, Y. Kawashima, K. Takahashi, and H. Ishiwara, “Impact of HfO2 buffer layers on data retention characteristics of ferroelectric-gate field-effect transistors,” Appl. Phys. Lett., vol. 85, no. 15, pp. 3199-3201, 2004.
    ﹝20﹞ 沈士傑, “淺談快閃式記憶體(Flash Memory)之發展”, 電子月刊, 9月號,1996.
    第二章
    ﹝21﹞ H. M. Dulker, P. D. Beal, and J. F. Scott, “Fatigue and switching in ferroelectric memories: theory and experiment,” J. Appl. Phys., vol. 68, pp. 5783-5791, 1990.
    ﹝22﹞ J. F. Scott and Y. K. Fang, “Device physics of ferroelectric thin-film memories,” Jpn. J. Appl. Phys., vol. 38, part 1, no. 4B, pp. 2272-2274, 1999.
    ﹝23﹞ G. W. Dietz, M. Schumacher, and R. Waser, “Leakage current in Ba0.7Sr0.3TiO3 thin films for ultrahigh-density dynamic random access memories,” J. Appl. Phys., vol. 82, no. 5, pp. 2359-2361, 1997.
    ﹝24﹞ B. A. Baumert, L. H. Chang, A. T. Matsuda, T. L. Tsai, C. J. Tracy, R. B. Gregory, P. L. Fejes, N. G. Cave, and W. Chen, “Characterization of sputtered barium strontium titanate and strontium titanate thin films,” J. Appl. Phys., vol. 85, no. 2, pp.2558-2566, 1997.
    ﹝25﹞ J. F. Scott, “Ferroelectric Memories” Berlin, Germany: Springer-Verlag, 2001.
    ﹝26﹞ H. Hu and S. B. Ktupanidhi, “Current-voltage characteristics of ultrafine-grained ferroelectric Pb(Zr,Ti)O3 thin film,” J. Mater. Res., vol. 9, no. 6, 1994.
    ﹝27﹞ J. F. Scott, C. A. Araujo, B. M. Melnick, and L. D. McMillan, “Quantitative measurement of space-charge effects in lead zirconate-titanate memories,” J. Appl. Phys., vol. 70, no. 1, pp. 382-388, 1991.
    ﹝28﹞ C. Sudhama, A. C. Campbell, P. D. Maniar, R. E. Jones, R. Moazzami, and C. J. Mogab, “A model for electrical conduction in metal-ferroelectric-metal thin film capacitor,” J. Appl. phys., vol. 75, no. 2, pp. 1014-1022, 1994.
    ﹝29﹞ N. Inoue and Y. Hayashi, “Effect of imprint on operation and reliability of ferroelectric random access memory (FeRAM),” IEEE Transactions on Electron Devices, vol. 48, pp. 2266-2272, 2001.
    第三章
    ﹝30﹞ Y. Nakao and Y. Fujisaki, “Study on Pb-based ferroelectric thin films prepared by sol-gel method for memory application,” Jpn. J. Appl. Phys., vol. 33, no. 9B, pp. 5265-5267, 1994.
    ﹝31﹞ K. Aoki and Y. Tarui, “Dielectric properties of (111) and (100) lead-zirconate-titanate films prepared by sol-gel technique,” Jpn. J. Appl. Phys., vol. 33, no. 9B, pp. 5155-5158, 1994.
    ﹝32﹞ W. J. Lin and M. Y. Yang, “Growth and fatigue properties of pulsed laser deposited PLZT thin films with [001] preferred orientation,” J. Mat. Sci.: Materials in Electronics, vol. 7, pp. 409-417, 1996.
    ﹝33﹞ T. F. Tseng, R. P. Yang, and K. S. Liu, “Ferroelectric properties of PLZT films deposited on Si3N4-coated Si substrates by pulsed laser deposition process,” Appl. Phys. Lett., vol. 70, no. 1, pp. 46-48, 1997.
    ﹝34﹞ H. Nakasima and Y. Fujimor, “Electrical properties for capacitors of dynamic random access memory on PLZT thin films by metaorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 33, no. 9B, pp. 5139-5142, 1994.
    ﹝35﹞ C.M. Foster and H. K. Kim, “Single-crystal PZT thin films prepared by metal-organic chemical vapor deposition: Systematic compositional variation of electronic and optical properties,” J. Appl. Phys., vol. 81, no. 5, pp. 2349-2357, 1997.
    ﹝36﹞ H. Miki and Y. Ohji, “Uniform ultra-thin Pb(Zr,Ti)O3 films formed by metal-organic chemical vapor deposition and their electrical characteristics,” Jpn. J. Appl. Phys., vol. 33, no. 9B, pp. 5143-5146, 1994.
    ﹝37﹞ E. Cattan and H. Buhay, “Structure control of PZT buffer layers produced by magnetron sputtering,” Appl. Phys. Lett., vol. 70, no. 13, pp. 1718-1720, 1997.
    ﹝38﹞ O. Auciello, A. I. Kingon, and S. B. Krupanidhi, “Sputter synthesis of ferroelectric films and heterostructures,” Mat. Res. Bulletin, p. 25, 1996.
    ﹝39﹞ L. Wang and I. C. Chen, “Properties of PbZrTiO3 thin films prepared by R.F. magnetron sputtering and heat treatment,” Mat. Res. Bulletin, vol. 25, pp. 1495-1501, 1990.
    ﹝40﹞ V. Chikarmane and M. H. Francombe, “Effects of post-deposition annealing ambient on the electrical characteristics and phase transformation kinetics of sputtered lead zirconate (65/35) thin film capacitors,” J. Vac. Scl. Technol. A, vol. 10, no. 4, 1992.
    第四章
    ﹝41﹞ 汪建民, “材料分析,”中國材料科學學會, 1998.
    ﹝42﹞ G. Binnig and C. F. Quate, “Atomic Force Microscope,” Phys. Rev. Lett. 56, pp. 930-933, 1986.
    第五章
    ﹝43﹞ J. P. Han, S. M. Koo, C. A. Richter, and E. M. Vogel, “Influence of buffer layer thickness on memory effects of SrBi2Ta2O9/SiN/Si structures,” Appl. Phys. Lett., vol. 85, no. 8, pp. 1439-1441, 2004.
    ﹝44﹞ S. K. Lee, Y. T. Kim, and S. ll Kim, “Effect of coercive voltage and charge injection on memory windows of metal-ferroelectric- semiconductor and metal-ferroelectric-insulator- semiconductor gate structures,” J. Appl. Phys., vol. 91, no. 11, pp. 9303-9307, 2002.
    ﹝45﹞ M. Houssa, High-κGate Dielectrics, Interuniversity Microelectronics Centre (IMEC), Belgium, 2004.
    ﹝46﹞ C. Y. Chang, T. P. C. Juan, J. Y. M. Lee, “Fabrication and characterization of metal-ferroelectric(PbZr0.53Ti0.47O3)-insulator (Dy2O3)-semiconductor capacitors for nonvolatile memory applications,” Appl. Phy. Lett., vol. 88, 072917, pp. 1-3, 2006.
    ﹝47﹞ S. L. Miller, R. D. Nasby, J. R. Schwank, and P. V. Dressendorfer, “Device modeling of ferroelectric capacitors,” J. Appl. Phys., vol. 68, pp. 6463-6471, 1990.
    ﹝48﹞ S. L. Miller, J. R. Schwank R. D. Nasby, and M. S. Rodger, “Modeling ferroelectric capacitor swithching with asymmetric nonperiodic input signals and arbitrary initial conditions,” J. Appl. Phys., vol. 70, no. 5, pp.2849-2861, 1991.
    ﹝49﹞ T. Kanashima and M. Okuyama, “Analyses of high frequency capacitance- voltage characteristics of metal-ferroelectric-insulator-silicon structure,” Jpn. J. Appl. Phys., vol. 38, pp. 2044-2048, 1999.
    ﹝50﹞ Y. Fujisaki, T. Kijima, and H. Ishiwara, “High-performance metal-ferroelectric -insulator-semiconductor structures with a damage-free and hydrogen-free silicon-nitride buffer layer,” Appl. Phys. Lett., vol. 78, no. 9, pp. 1285-1287, 2001.
    ﹝51﹞ M. Y. Yang and S. B. Chen, “One-transistor PZT/Al2O3, SBT/Al2O3 and BLT/Al2O3 stacked gate memory,” IEEE IEDM, pp. 795-798, 2001.
    ﹝52﹞ C. L. Sun, S. Y. Chen, S. B. Chen, and A. Chin, “Effect of annealing temperature on physical and electrical properties of Bi3.25La0.75Ti3O12 thin films on Al2O3-buffered Si,” Appl. Phys. Lett., vol. 80, no. 11, pp. 1984-1986, 2002.
    ﹝53﹞ B. E. Park and H. Ishwara, “Fabrication of MFIS diodes using BLT (Bi,La)4Ti3O12 and LaAlO3 buffer layers,” Applications of Ferroelectrics, ISAF 2002, Proceedings of the 13th IEEE International Symposium on, 2002.
    ﹝54﹞ B. E. Park, K. Takahashi, and H. Ishiwara, “Five-day-long ferroelectric memory effect in Pt/(Bi, La)4Ti3O12/HfO/Si structures,” Appl. Phys. Lett., vol. 85, no. 19, pp. 4448-4450, 2004.
    ﹝55﹞ K. Takahashi, K. Aizawa, B. E. Park, and H. Ishwara, “Thirty-day-long data retention in ferroelectric-gate field-effect transistors with HfO2 Buffer Layers,” Jpn. J. Appl. Phys., vol. 44, pp. 6218-6220, 2005.
    ﹝56﹞ H. N. Lee, M. H. Lim, Y. T. Kim, T. S. Kalkur, and S. H. Choh, “Characteristics of metal/ferroelectric/insulator/semiconductor field effect transistor using a Pt/SrBi2Ta2O3/Y2O3/Si structure,” Jpn. J. Appl. Phys. vol. 37, pp. 1107-1109, 1998.
    ﹝57﹞ D. S. Shin, H. N. Lee, Y. T. Kim, I. H. Choi, and B. H. Kim, “Electrical Properties of Pt/SrBi2Ta2O9/CeO2/SiO2/Si Structure for Nondestructive Readout Memory,” Jpn. J. Appl. Phys. vol. 37, pp. 4373-4376, 1998.
    ﹝58﹞ J. P. Han and T. P. Ma, “SrBi2Ta2O9 memory capacitor on Si with a silicon nitride buffer,” Appl. Phys. Lett., vol. 72, no. 10, pp. 1185-1186, 1998.
    ﹝59﹞ S. B. Xiong and S. Sakai, “Memory properties of SrBi2Ta2O9 thin film prepared on SiO2/Si substrates,” Appl. Phys. Lett., vol. 75, no. 11, pp. 1613-1615, 1999.
    ﹝60﹞ K. J. Choi, W. C. Shin, J. H. Yang, and S. G. Yoon, “Metal/ferroelectric/ insulator/semiconductor structure of Pt/SrBi2Ta2O9 /YMnO3/Si using YMnO3 as the buffer layer,” Appl. Phys. Lett., vol. 75, pp. 722-724, 1999.
    ﹝61﹞ C. H. Chien, D.Y. Wang, M. J. Yang, P. Lehnen, C. C. Leu, S. H. Chuang, T. Y. Huang, and C. Y. Chang, “High-performance Pt/SrBi2Ta2O9/ HfO2/Si Structure for Nondestructive Readout Memory,” IEEE Electron Device Letter, vol. 24, no. 9, pp. 553-555, 2003.
    ﹝62﹞ M. Noda, K. Kodama, S. Kitai, M. Takahashi, T. Kanashima, and M. Okuyama, “Basic characteristics of metal-ferroelectric -insulator-semiconductor structure using a high-k PrOx insulator layer,” J. Appl. Phys., vol. 93, no. 7, pp. 4137-4143, 2003.
    ﹝63﹞ J. P. Han, S. M. Koo, C. A. Richter, and E. M. Vogel, “Influence of buffer layer thickness on memory effects of SrBi2Ta2O9/SiN/Si structures,” Appl. Phys. Lett., vol. 85, no. 8, pp. 1439-1441, 2004.
    ﹝64﹞ K. Suzuki, D. Fu, K. Nishizawa, T. Miki and K. Kato, “Preparation of (Y,Yb)MnO3/Y2O3/Si(MFIS) Structure by Chemical Solution Deposition Method,” Jpn. J. Appl. Phys., vol. 42, pp. 6007-6010, 2003.
    ﹝65﹞ D. Ito, N. Fujimura, T. Yoshimura, and T. Ito, “Influence of Schottky and Pool-Frenkel emission on the retention property of YMnO3-based metal/ferroelectric/insulator/semiconductor capacitors,” J. Appl. Phys., vol. 94, no. 6, pp. 4036-4041, 2003.
    ﹝66﹞ K. Haratake, N. Shigemitsu, M. Nishijima et al., “Low-temperature growth and characterization of Epitaxial YMnO3/Y2O3/Si MFIS capacitors with thinner insulator layer,” Jpn. J. Appl. Phys. vol. 44, pp. 6977-6980, 2005.
    ﹝67﹞ T. Hirai , K. Teramoto, K. Nagashima, H. Koike, and Y. Tarui, “Characterization of Metal/Ferroelectric/Insulator/Semiconductor Structure with CeO2 Buffer layer,” Jpn. J. Appl. Physic, vol. 34, pp. 4163-4166, 1995.
    ﹝68﹞ B. E. Park, S. Shouriki, E. Tokumitsu, and H. Ishiwara, “Fabrication of PbZrxTi1-xO3 films on Si structures using Y2O3 buffer layers,” Jpn. J. Appl. Phys. vol. 37, pp. 5145-5149, 1998.
    第六章
    ﹝69﹞ R. Waser, Nanoelectronics and Information Technology, Cambridge University Press, p. 391, 2003.
    ﹝70﹞ G. Yi, Z. Wu, and M. Sayer, “Preparation of Pb (Zr,Ti)O3 thin films by sol gel processing: Electrical, optical, and electro-optic properties,” J. Appl. Phys., vol.64, pp. 2717-2724, 1988.
    ﹝71﹞ M. Takahashi and S. Sakai, “Self-aligned-Gate metal/ferroelectric/insulator/ semiconductor field-effect transistors with long memory retention,” Jpa. J. Appl. Phys., vol. 44, no. 25, pp. L800-L802, 2005.
    ﹝72﹞ C. T. Black, C. Farrell, and T. J. Licata, “Suppression of ferroelectric polarization by an adjustable depolarization field,” Appl. Phys. Lett., vol. 71, pp. 2041-2043, 1997.
    ﹝73﹞ M. Takahashi, H. Sugiyama, T. Nakaiso, K. Kodama, M. Noda and M.Okuyama, “Analysis and improvement of retention time of memorized state of metal-ferroelectric-insulator-semiconductor structure for ferroelectric gate FET memory,” Jpn. J. Appl. Phys. vol. 40, pp. 2923-2927, 2001.
    ﹝74﹞ K. Aizawa, B. E. Park, Y. Kawashima, K. Takahashi, and H. Ishiwara, “Impact of HfO2 buffer layers on data retention characteristics of ferroelectric-gate field-effect transistors,” Appl. Phys. Lett., vol. 85, no. 15, pp. 3199-3201, 2004.
    ﹝75﹞ T. Hirai, Y. Fujisaki, K. Nagashima, H. Koike and Y. Tarui, “Preparation of SrBi2Ta2O9 film at low temperatures and fabrication of a metal/ferroelectric /insulator/semiconductor field effect transistor using Al/SrBi2Ta2O9/CeO2 /Si(100) structures,” Jpn. J. Appl. Phys. vol. 36, pp. 5908-5911, 1997.
    ﹝76﹞ K. H. Kim, J. P. Han, S. W. Jung, and T. P. Ma, “Ferroelectric DRAM (FEDRAM) FET with metal/SrBi2Ta2O9/SiN/Si gate structure,” IEEE Electron Device Letters, vol. 23, no. 2, pp. 82-84, 2002.
    ﹝77﹞ S. Sakai and R. Ilangovan, “Metal-ferroelectric-insulator-semiconductor memory FET with long retention and high endurance,” IEEE Electron Device Letters, vol. 25, no. 6, pp. 369-371, 2004.
    ﹝78﹞ E. Tokumitsu and H.Ishiwara, “Nonvolatile memory operations of metal- ferroelectric-insulator-semiconductor (MFIS) FET’s using PLZT/STO/Si(100) structures,” IEEE Electron Device Letters, vol. 18, no. 4, pp. 160-162, 1997.
    ﹝79﹞ A. Chin, S. Member, M. Y. Yang, C. L. Sun, and S. Y. Chen, “Stack gate PZT/Al2O3 one transistor ferroelectric memory,” IEEE Electron Device Letters, vol. 22, no. 7, pp. 336-338, 2001.
    ﹝80﹞ S. M. Koo, S. Khartsev, C. M. Zettering, A. Grishin, and M. Ostling, “Ferroelectric Pb(Zr0.52Ti0.48) SiC field-effect transistor,” Appl. Phys. Lett., vol. 83, no. 19, pp. 3975-3977, 2003.
    ﹝81﹞ P. C. Juan, C. Y. Chang, F. C. Chiu, and J. Y. Lee, “Fabrication and characterization of metal-ferroelectric(PbZr0.53Ti0.47O3)- insulator(Dy2O3)- semiconductor (MFIS) capacitors for nonvolatile memory application,” IEEE Electron Device Letters, vol. 27, pp. 217-220, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE