簡易檢索 / 詳目顯示

研究生: 陳倫倫
Chen, Lun Lun
論文名稱: 以鋯為基底之高介電常數介電層應用於先進互補式金屬氧化物半導體技術
Application of Zr-based High-κ Dielectric in Advanced CMOS Technology
指導教授: 巫勇賢
Wu, Yung-Hsien
口試委員: 巫勇賢
Wu, Yung-Hsien
荊鳳德
Chin, Albert
張廖貴術
Chang-Liao, K.S.
吳永俊
Wu, Yung Chun
鄭淳護
Cheng, Chun-Hu
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 129
中文關鍵詞: 高介電系數介電層結晶互補式金屬氧化物半導體
外文關鍵詞: Zirconium, high-k dielectric, crystalline, CMOS
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主旨在研究各種鋯基高介電常數氧化物應用於非揮發性記憶體(NVM)、金屬氧化物半導體(MOS)和金氧金電容(MIM)等元件及其相關特性之研究。
    本文可分為兩大部分,第一部份的研究主要集中在利用不同的製程方式製作結晶態的二氧化鋯 (ZrO2),整合應用於金屬氧化物半導體的閘極介電層與非揮發性記憶體的電荷補捉層中。首先,在非揮發性記憶體方面的研究,我們利用原子層沉積(ALD)方式成長介電系數高達37.8的結晶態tetragonal ZrO2 (t-ZrO2)作為電荷捕捉層,並加入氨電漿氮化處理改善結晶態介質之漏電流,進而達成較大的記憶視窗、快速的寫入/抹除操作速度和良好的資料儲存特性;另一方面,我們也研究了結晶態ZrO2與非晶態ZrO2在作為電荷捕捉層間的差異,在不使用ALD的機台狀況下,我們研究發現在濺鍍ZrO2時摻入一定比例的氮原子,再加上後續600 oC的回火處理即可形成cubic ZrO2,並具有達32.8的介電常數。 這與非晶態的ZrO2元件相比,操作速度大幅的提升,原因在於結晶態ZrO2能提供較大的介電係數與較多的缺陷位置。
    在金屬氧化物半導體方面的研究,首先我們嘗試將ALD沉積之tetragonal ZrO2應用於CMOS元件之閘極介電層,研究tetragonal ZrO2與Al2O3堆疊順序對於元件效能之影響。在此研究中,我們發現相較於Al2O3/t-ZrO2/Si的堆疊順序,熱穩定性較好的t-ZrO2/Al2O3/Si堆疊可以獲得較大的電容值、較好的散頻現象、較低的漏電流以及良好的可靠度。同時,為了使元件能有更優異的漏電流表現,我們採用先前提出的電漿氮化對tetragonal ZrO2進行處理,結果顯示漏電流確實能有大幅度的改善。此外,另一方面的研究則是在探討結晶態tetragonal ZrO2的形成方式,除了ALD的沉積方式之外,我們嘗試使用熱蒸鍍系統來成長結晶態tetragonal ZrO2,在此研究中,藉由沉積ZrO2/Ge/ZrO2夾層結構以及後續600 oC的回火處理,即可形成以鍺摻入之穩定結晶態tetragonal ZrO2。相較於其他文獻,這種製程方式能夠提供一種更為可靠的方式來控制鍺摻入的比例,進而在較低的熱處理溫度下形成結晶態tetragonal ZrO2。另外,在研究中我們也針對結晶態tetragonal ZrO2進行後續氨電漿處理和氫氣熱處理,藉此比較其在元件漏電流和可靠度上的影響。
    第二部分的研究主要在於非晶態鋯基高介電常數氧化物方面,包含(ZrO2)x(La2O3)1−x合金應用於金屬氧化物半導體的閘極介電層與ZrTiOx應用於金氧金電容的絕緣層中。首先,我們利用熱蒸鍍系統的方式沉積ZrO2/La2O3/ZrO2夾層結構並進行後續700 oC的回火處理,以形成介電常數達26.2的(ZrO2)x(La2O3)1−x合金作為閘極氧化層。與以往的結晶態ZrO2不同的是,非晶態的(ZrO2)x(La2O3)1−x合金並不會有晶界存在而導致漏電流惡化的困擾。同時,我們也藉著整合高品質的氮氧化矽作為介面層 ,除了使元件的EOT微縮至1.1nm,並且達到較好的散頻現象、較低的介面缺陷密度、漏電流以及良好的可靠度等電特性。最後,在金氧金電容的研究方面,我們發現以單層的ZrTiOx介電層的MIM電容具有負的非線性電壓電容係數,其介電常數達22.5。而單層的ZrTiOx介電層MIM電容具有正的非線性電壓電容係數和高介電常數25.8。藉由整合ZrLaOx與ZrTiOx兩種金屬氧化物作為MIM電容的介電層,我們得以實現非線性電壓電容係數的"抵消效應"並且得到高電容密度的成果。以ZrLaOx/ZrTiOx/ZrLaOx堆疊結構的MIM電容可以得到高電容密度14.6 fF/μm2和很小的非線性電壓電容係數33 ppm/V2,並且在頻散現象、溫度穩定性、可靠度和漏電流密度等特性上有著不錯的表現。
    傳統矽電子元件在尺寸微縮上遇到極大的挑戰,本論文成功地開發出各種包含結晶態與非晶態的鋯基氧化物,藉著其較高的介電常數,結合高品質的介面層或後續的電漿處理,成功的應用於非揮發性記憶體(NVM)、金屬氧化物半導體(MOS)和金氧金電容(MIM)等元件中,不僅具有極佳的潛力,相信未來也能整合於現行的先進互補式半導體技術當中。


    In this thesis, various Zr-based high-κ dielectrics are widely discussed for the application of nonvolatile memory, MOS device, and MIM capacitors. This study can be roughly divided into two parts. At first part, the tetragonal ZrO2 (t-ZrO2) or cubic ZrO2 (c-ZrO2) is formed by different fabrication process and used as charge-trapping layer for flash memory and gate dielectric for MOS device, respectively. For Nonvolatile memopry, a tetragonal ZrO2 film was introduced as the charge-trapping layer for nonvolatile memory and the impact of NH3 nitridation of the tetragonal ZrO2 film on memory performance was also explored. This is the pioneering research on the use of crystalline high-κ material as the charge-trapping layer and the drawbacks of the crystalline high-κ material have been avoided by the appropriate nitridation, which results in a high operation speed in terms of 2.6-V flatband voltage shift by programming at +10 V for 10 ms and a good retention characteristic. On the other hand, an amorphous ZrON film and ZrON crystallized to a cubic ZrO2 film by thermal annealing were used as the charge-trapping layer to explore the impact of crystallinity of high-κ dielectric on memory performance. The memory with a nitrogen-stabilized cubic ZrO2 film shows promising performance in terms of 3.81-V hysteresis memory window by ±7-V program/erase voltage. As compared to that with an amorphous ZrON film, the improved performance is due to the greatly enhanced κ-value of 32.8 and the increased trapping sites provided by grain boundaries.
    For the MOS device application, the tetragonal ZrO2 was deposited by the atomic layer deposition (ALD) as the gate dielectrics. In this work, the electrical characteristics of the t-ZrO2/Al2O3 or Al2O3/ t-ZrO2 gate stack sequence have been studied, and an approach to effectively suppress leakage current has been proposed. As compared to the Al2O3/t-ZrO2/Si stack, the thermally stable t-ZrO2/Al2O3/Si stack for the gate dielectric demonstrates larger capacitance, smaller hysteresis, better frequency dispersion, lower leakage current, and more robust reliability. A further reduced leakage current can be achieved by additional NH3 nitridation of t-ZrO2 to well passivate the grain boundaries without sacrificing its κ-value. In addition to the ALD system, a Ge-stabilized t-ZrO2 film formed by depositing a ZrO2/Ge/ZrO2 laminate by an electron beam evaporation tool and a subsequent annealing was proposed, which provides a more reliable approach to control the dopant concentration. By combining thin SiON as an interfacial layer, the SiON/t-ZrO2 gate stack shows tiny amount of hysteresis and negligible frequency dispersion in capacitance voltage (C–V) characteristics. In this work, by passivating leaky channels derived from grain boundaries with NH3 plasma, good leakage current is achieved and desirable reliability is also obtained.
    For the second part of this thesis, we focus on the amorphous Zr-based high-κ oxides applications, including (ZrO2)x(La2O3)1−x alloy and ZrLaOx/ZrTiOx/ZrLaOx Laminate. First, an amorphous (ZrO2)x(La2O3)1-x alloy formed by ZrO2/La2O3/ZrO2 laminate followed by a thermal annealing was integrated with a thermally grown SiON interfacial layer as a gate stack, and its chemical as well as electrical characteristics were investigated. By integrating the (ZrO2)x(La2O3)1-x alloy with an SiON interfacial layer as the gate stack, it displays good frequency dispersion in capacitance–voltage (C–V ) characteristics and low interfacial trap density of 1.52 × 1011 cm−2 eV−1 . In addition, the current conduction mechanism of the gate stack is observed to be Fowler–Nordheim tunneling and the leakage current of 3.6 × 10−6 A/cm2 at the gate voltage of −1 V for equivalent oxide thickness (EOT) of 1.1 nm can be achieved Moreover, satisfactory reliability is verified by bias temperature instability measurement. For the MIM capacitors application, ZrTiOx with an even higher κ value was found to have a negative VCC-α and its application for MIM capacitors was studied. further investigation on the possible effects of O2 annealing on VCC-α and interfacial layer formation for ZrTiOx was also performed in this work By integrating the ZrTiOx with ZrLaOx which corresponds to a positive VCC-α, MIM capacitors with ZrLaOx/ZrTiOx/ZrLaOx laminate demonstrate great potential for next-generation RF/analog ICs applications because of a high capacitance density of 14.6 fF/μm2, a low VCC-α of 33 ppm/V2, nearly frequency-dependence capacitance and satisfactory leakage performance.
    In this study, to overcome the continuous scaling challenge of CMOS device, the crystalline and amorphous Zr-based high-κ dielectrics have been successfully developed for nonvolatile memory、MOS device, and MIM capacitor applications. In addition, by integrating with high quality interfacial layer or the follow-up plasma nitridation treatment, it holds the great potential for next-generation CMOS technology.

    Contents Abstract (in Chinese) ii Abstract (in English) v Acknowledgement viii Table Captions xii Figure Captions xiii Chapter 1 Introduction 1 1.1 Motivation of Studying Zr-based Oxides 1 1.2 Issues of High-κ Dielectrics Used for Nonvolatile Memory 2 1.3 Issues of High-κ Dielectrics Used for MOS Device 3 1.4 Issues of High-κ Dielectrics Used for MIM Capacitors 4 1-5 Organization of the Thesis 6 References 13 Chapter 2 Nitrided Tetragonal ZrO2 as the Charge-Trapping Layer for Nonvolatile Memory Application 20 2.1 Introduction 20 2.2 Motivation 21 2.3 Experiments 21 2.4 Results and Discussion 22 2.4.1 Physical Properties Analysis 22 2.4.2 Program/Erase Transient Characteristics 23 2.4.3 Data Retention Characteristics 25 2.5 Conclusion 26 References 27 Chapter 3 Nonvolatile Memory with Nitrogen-Stabilized Cubic-Phase ZrO2 as Charge-Trapping Layer 32 3.1 Introduction 32 3.2 Motivation 33 3.3 Experiments 33 3.4 Results and Discussion 34 3.4.1 Physical Properties Analysis 34 3.4.2 C-V Hysteresis & P/E Transient Characteristics 35 3.4.3 Data Retention & I-V Characteristics 36 3.5 Conclusion 37 References 39 Chapter 4 Tetragonal ZrO2/Al2O3 Stack as High-κ Gate Dielectric for Si-Based MOS Devices 44 4.1 Introduction 44 4.2 Motivation 45 4.3 Experiments 45 4.4 Results and Discussion 46 4.4.1 C-V Characteristics 46 4.4.2 I-V Characteristics 48 4.4.3 Reliability Characteristics 49 4.5 Conclusion 49 References 51 Chapter 5 MOS Devices with Tetragonal ZrO2 as Gate Dielectric Formed by Annealing ZrO2/Ge/ZrO2 Laminate 58 5.1 Introduction 58 5.2 Motivation 59 5.3 Experiments 59 5.4 Results and Discussion 60 5.4.1 Physical Properties Analysis 60 5.4.2 C-V Characteristics 61 5.4.3 I-V Characteristics 61 5.4.4 Reliability Characteristics 62 5.5 Conclusion 63 References 64 Chapter 6 MOS Devices With High-κ (ZrO2)x(La2O3)1−x Alloy as Gate Dielectric formed by Deposition ZrO2/La2O3/ZrO2 Laminate and Annealing 71 6.1 Introduction 71 6.2 Motivation 73 6.3 Experiments 74 6.4 Results and Discussion 76 6.4.1 Physical Properties Analysis 76 6.4.2 The Effect of Annealing Temperature and Interfacial Layer 78 6.4.3 Exploration of the Interfacial Trap Density 80 6.4.4 C-V Characteristics 81 6.4.5 I-V Characteristics 82 6.4.6 Reliability Characteristics 84 6.5 Conclusion 85 References 87 Chapter 7 Impact of O2 Annealing on ZrTiOx Characteristics and Its Application to High-performance MIM Capacitors with ZrLaOx/ZrTiOx/ZrLaOx Laminate 103 7.1 Introduction 103 7.2 Motivation 103 7.3 Experiments 105 7.4 Results and Discussion 105 7.4.1 Physical Properties Analysis 105 7.4.2 The Effect of O2 Annealing on ZrTiOx Characteristics 106 7.4.3 C-V Characteristics 107 7.4.4 Canceling Effect 108 7.4.5 Temperature Dependence 109 7.4.6 I-V Characteristics 109 7.4.7 Reliability Characteristics 110 7.5 Conclusion 111 References 112 Chapter 8 Conclusion & Future work 122 Vita--------------------------- 126 Publication List 127

    [1.1] G. E. Moore, “Progress in digital integrated electron ICs,” in IEDM Tech. Dig.,1975, pp.11-13.
    [1.2] P. A. Packan, “Device physics :Pushing the limits,” Science,vol. 285 no. 5436, pp. 2079-2081, Sep.1999.
    [1.3] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits” in Proc. IEEEvol. 91, no. 2, pp.305-327, Feb. 2003.
    [1.4] Y. C. Yeo, T. J. King, , and C. Hu, “MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 1027-1035,Apr 2003.
    [1.5] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B, vol. 18, no. 3, pp. 1785-1791 May/Jun 2000.
    [1.6] J. Robertson, “Maximizing performance for higher κ gate dielectrics,” J. Appl. Phys., vol. 104, pp. 124111-1–124111-7, Dec. 2008.
    [1.7] C. H. Lee, H. F. Luan, W. P. Bai, S. J. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “MOS Characteristics of ultra-thin Rapid Thermal CVD ZrO2 and Zr Silicate Gate Dielectrics,” in IEDM Tech. Dig., 2000, pp.27-30.
    [1.8] K.J. Choi, J.H. Kim, S.G. Yoon, and W.C. Shin, “Structural and electrical properties of HfOxNy and HfO2 gate dielectrics in TaN gated nMOSCAP and nMOSFET devices,” J. Vac. Sci. Technol. B, vol. 22, no. 4, pp. 1755-1758 Jul/Aug 2004.
    [1.9] S. H. Bae, C. H. Lee, R. Clark, and D. L. Kwong, “MOS characteristics of ultrathin CVD HfAlO gate dielectrics,” IEEE Electron Device Lett., vol. 24, no. 9, pp. 556-558, Sep. 2003.
    [1.10] M. R. Visokay, J. J. Chambers, A. L. P. Rotondaro, A. Shanware, and L. Colombo, “Application of HfSiON as a gate dielectric material,” Appl. Phys. Lett., vol. 80, no. 17, 29, pp. 3183-3185, Apr.2002.
    [1.11] X. Zhao and D. Vanderbilt, “Phonons and lattice dielectric properties of zirconia,” Phys. Rev. B, Condens. Matter, vol. 65, no. 7, p. 075105, Feb. 2002.
    [1.12] A. Navrotsky and S. V. Ushakov, Materials fundamentals of gate dielectrics, The Netherlands: Springer-Verlag, 2005, ch. 3, p. 57.
    [1.13] K. Kita, K. Kyuno, and A. Toriumi, “Permittivity increase of yttrium-doped HfO2 through structural phase transformation,” Appl. Phys. Lett., vol. 86, no. 10, p. 102 906, Mar. 2005.
    [1.14] W. He, L. Zhang, Daniel S. H. Chan, and B. J. Cho, “Cubic-structured HfO2 with optimized doping of lanthanum for higher dielectric constant,” IEEE Electron Device Lett. vol. 30, no. 6, pp. 623-625,Jun.2009.
    [1.15] S. Migita, Y. Watanabe, H. Ota, H. Ito, Y. Kamimuta, T. Nabatame, and A. Toriumi, “Design and demonstration of very High-κ (κ~50) HfO2 for ultra-scaled Si CMOS, ” in VLSI Symp. Tech. Dig., 2008, pp. 152-153.
    [1.16] F. Libsch, and M. H. White, “Charge transport and storage of low programming voltage SONOS/MONOS memory device,” Solid Stare Electron vol. 33, no. 1, pp. 105-126, 1990.
    [1.17] M. K. Cho,and D. M. Kim, “High performance SONOS memory cells free of drain turn-on and over-erase: compatibility issue with current flash technology,” IEEE Electron Device Lett., vol. 21, no. 8, pp. 399-401, Aug. 2000.
    [1.18] J. Bu ,and M. H. White, “Design considerations in scaled SONOS nonvolatile memory devices,” Solid State Electron., vol. 45, pp. 113-120,2001.
    [1.19] H. Clement Wann, and C. Hu, “High-endurance ultra-thin tunnel oxide in MONOS device structure for dynamic memory application,” IEEE Electron Device Lett. vol. 16, no. 11, pp. 491-493, Nov. 1995.
    [1.20] X. Wang, J. Liu, W. Bai, and D. L. Kwong, “A novel MONOS-type nonvolatile memory using high-κ dielectrics for improved data retention and programming speed,” IEEE Trans. Electron Devices, vol. 51, no. 4, pp. 597-602,Apr 2004.
    [1.21] T. Sugizaki, M. Kohayashi, M. Ishidao, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, T. Nakanishi, and H. Tanaka, “Novel multi-bit SONOS type flash memory using a high κ charge trapping layer,” in VLSI Symp. Tech. Dig., 2003, pp. 27-28.
    [1.22] T. Lee and S. K. Banerjee, “Device characteristics of HfON charge-trap layer nonvolatile memory,” J. Vac. Sci. Technol. B, vol. 28, no. 5,pp. 1005-1010, Sep/Oct 2010.
    [1.23] Y. N. Tan, W. K. Chim, W. K. Choi, M. S. Joo, and B. J. Cho, “Hafnium aluminum oxide as charge storage and blocking-oxide layers in SONOS-type nonvolatile memory for high-speed operation,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 654-662, Apr. 2006.
    [1.24] C. H. Lai, A. Chin, H. L. Kao, K. M. Chen, M. Hong, J. Kwo, and C. C. Chi, “Very low voltage SiO2/HfON/HfAlO/TaN memory with fast speed and good retention,” in VLSI Symp. Tech. Dig., 2006, pp. 44–45.
    [1.25] V. Narayanan, V. K. Paruchuri, N. A. Bojarczuk, B. P. Linder, B.Doris, Y. H. Kim, S. Zafar, J. Stathis, S. Brown, J.Arnold, , M. Copel, M. Steen, E. Cartier, A. Callegari, P. Jamison, J. P. Locquet, D. L. Lacey, Y. Wang, P. E. Batson, P. Ronsheim, R. Jammy, M. P. Chudzik, M. Ieong, S. Guha, G. Shahidi,and T. C. Chen, “Band-edge high-performance high-κ/metal gate n-MOSFETs using cap layers containing group IIA and IIIB elements with gate-first processing for 45 nm and beyond,” in VLSI Symp. Tech. Dig., 2006.
    [1.26] M. Goto, S. Kawanaka, S. Inumiya, N. Kusunoki, M. Saitoh, K. Tatsumura, A. Kinoshita, S. Inaba, and Y. Toyoshima, “The study of mobility-tin: Tradeoff in deeply scaled high-κ/metal gate devices and scaling design guideline for 22-nm node generation,” in VLSI Symp. Tech. Dig., Jun. 2009, pp. 214–215.
    [1.27] Z. Yu, J. Ramdani, J. A. Curless, C. D. Overgaard, and J. M. Finder, “Epitaxial oxide thin films on Si(001),” J. Vac. Sci. Technol. B, vol. 18, no. 4,pp. 2139-2145,Jul/Aug 2000.
    [1.28] H. Y. Yu, C. Ren, Y.C. Yeo, J. F. Kang, X. P. Wang, H. H. H. Ma, M. F. Li, D. S. H. Chan, and D.-L. Kwong, “Fermi pinning-induced thermal instability of metal-gate work functions,” IEEE Electron Device Lett. vol. 25, no. 5, pp. 337-339, May. 2004.
    [1.29] S. Saito, D. Hisamoto, S. Kimura, and M. Hiratani, “Unified mobility model for high-κ gate stacks,” in IEDM Tech. Dig., 2003, pp. 797-800.
    [1.30] I. Y. K. Chang, S. W. You, P. C. Juan, M. T. Wang, and J. Y. M. Lee, “The electrical and interfacial properties of metal-high-κ oxide-semiconductor field-effect transistors with LaAlO3 gate dielectric,” IEEE Electron Device Lett. vol. 30, no. 2, pp. 161-164, Feb. 2009.
    [1.31] H. C. Barshilia, B. Deepthi, and K. S. Rajam, “Stabilization of tetragonal and cubic phases of ZrO2 in pulsed sputter deposited ZrO2/Al2O3 and ZrO2/Y2O3 nanolayered thin films,” J. Appl. Phys., vol. 104, pp. 113532-1¬¬–1135321-12, 2008.
    [1.32] G. D. Wilka,R. M. Wallaceb,and J. M. Anthony, “High-κ gate dielectrics: current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243-5275, May. 2001.
    [1.33] M. Copel, M. C. Reuter, and P. Jamison, “Interlayer composition of HfO2∕Si(001) films,” Appl. Phys. Lett., vol. 85, no. 3, pp. 458-460, Jul. 2004.
    [1.34] I. C. Kizilyalli, R. Y. S. Huang, and P. K. Roy, “MOS transistors with stacked SiO –TaO –SiO gate dielectrics for giga-scale integration of CMOS technologies,” IEEE Electron Device Lett. vol. 19, no. 11, pp. 423-425,Nov.1998.
    [1.35] A. S. Oates, “Reliability issues for high-κ gate dielectrics.” in IEDM Tech. Dig., 2003, pp. 923-926.
    [1.36] K. Stein, J. Kocis, G. Hueckel, E. Eld, T. Bartush,R. Groves, N. Greco and D. H. T. Tewksbury, “High reliability metal insulator metal capacitors for silicon germanium analog applications,” IEEE Meetings, pp.191-194, 1997.
    [1.37] A. Berthelot, C. Caillat, V. Huard, S. Barnola, B. Boeck, H. Del-Puppo, N. Emonet, F. Lalanne, “Highly reliable TiN/ZrO2/TiN 3D stacked capacitors for 45 nm embedded DRAM technologies,” Proceeding of Solid-State Device Research Conference, Sept. 2006, pp. 343-346.
    [1.38] S. Y. Lee, H. Kim, and P. C. McIntyre, “Atomic layer deposition of ZrO2 on W for metal–insulator–metal capacitor application,” Appl. Phys. Lett., vol. 82, no. 17, pp. 2874-2876, Apr. 2003.
    [1.39] K. C. Chiang, C. H. Cheng, K. Y. Jhou, H. C. Pan, C. N. Hsiao, C. P. Chou, S. P. McAlister, A. Chin, and H. L. Hwang, “Use of a high-work-function Ni electrode to improve the stress reliability of analog SrTiO3 metal-insulator-metal capacitors,” IEEE Electron Device Lett., vol. 28, no. 8, pp. 694-696, Aug. 2007.
    [1.40] C. H. Cheng, H. C. Pan, H. J. Yang, C. N. Hsiao, C. P. Chou,and S. P. McAlister, “Improved high-temperature leakage in high-density MIM capacitors by using a TiLaO dielectric and an Ir electrode,” IEEE Electron Device Lett. vol. 28, no. 12, pp. 1095-1097, Dec. 2007.
    [1.41] International Technology Roadmap for Semiconductors.
    [1.42] S. J. Kim, B. J. Cho, M. F. Li,S. J. Ding, C. Zhu, M. B. Yu, B. Narayanan, A. Chin,.and D. L. Kwong, “Improvement of voltage linearity in high-κ MIM capacitors using HfO2–SiO2 stacked dielectric,” IEEE Electron Device Lett. vol. 25, no. 8, pp. 538-540, Aug. 2004.
    [1.43] J. D. Chen, J. J. Yang, R. Wise, P. Steinmann, M. B. Yu, C. Zhu, and Y. C. Yeo, “Physical and electrical characterization of metal–insulator–metal capacitors with Sm2O3 and Sm2O3/SiO2 laminated dielectrics for analog circuit applications,” IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2683-2691, Nov. 2009.\
    [1.44] Y. H. Wu, W. Y. Ou, C. C. Lin, J. R. Wu, M. L. Wu, and L. L. Chen, “MIM capacitors with crystalline-TiO2/SiO2 stack featuring high capacitance density and low voltage coefficient,” IEEE Electron Device Lett., vol. 33, no.1, pp. 104-106, Jan. 2012.
    [2.1] C. H. Lee, S. H. Hur, Y. C. Shin, J. H. Choi, D. G. Park, and K. Kim, “Charge-trapping device structure of SiO2/SiN/high−κ dielectric Al2O3 for high-density flash memory,” Appl. Phys. Lett., vol. 86, no. 15, p. 152 908, Apr. 2005.
    [2.2] M. Chang, M. Hasan, S. Jung, H. Park, M. Jo, H. Choi, M. Kwon, H. Hwang, and S. Choi, “Improvement of memory properties for MANOS-type nonvolatile memory devices with high-pressure wet vapor annealing,” Microelectron. Eng., vol. 84, no. 9/10, pp. 2002–2005, Sep./Oct. 2007.
    [2.3] Y. N. Tan, W. K. Chim, W. K. Choi, M. S. Joo, and B. J. Cho, “Hafnium aluminum oxide as charge storage and blocking-oxide layers in SONOS-type nonvolatile memory for high-speed operation,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 654–662, Apr. 2006.
    [2.4] C. H. Lai, A. Chin, H. L. Kao, K. M. Chen, M. Hong, J. Kwo, and C. C. Chi, “Very low voltage SiO2/HfON/HfAlO/TaN memory with fast speed and good retention,” in VLSI Symp. Tech. Dig., 2006, pp. 44–45.
    [2.5] H. J. Yang, C. F. Cheng, W. B. Chen, S. H. Lin, F. S. Yeh, S. P. McAlister, and A. Chin, “Comparison of MONOS memory device integrity when using Hf1−x−yNxOy trapping layers with different N compositions,” IEEE Trans. Electron Devices, vol. 55, no. 6, pp. 1417–1423, Jun. 2008.
    [2.6] G. Zhang, W. S. Hwang, S. M. Bobadel, S.-H. Lee, B.-J. Cho, and W. J. Yoo, “Novel ZrO2/Si3N4 dual charge storage layer to form step-up potential wells for highly reliable multi-level cell application,” in IEDM Tech. Dig., 2007, pp. 83–86.
    [2.7] X. Zhao and D. Vanderbilt, “Phonons and lattice dielectric properties of zirconia,” Phys. Rev. B, Condens. Matter, vol. 65, no. 7, p. 075 105, Jan. 2002.
    [2.8] D. Fischer and A. Kersch, “The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles,” Appl. Phys. Lett., vol. 92, no. 1, p. 012 908, Jan. 2008.
    [2.9] C. Z. Zhao, S. Taylor, M. Werner, P. R. Chalker, R. T. Murray, J. M. Gaskell, and A. C. Jones, “Dielectric relaxation of lanthanum doped zirconium oxide,” J. Appl. Phys., vol. 105, pp. 044102-1–044102-8, Feb. 2009.
    [2.10] S. Bang, S. Lee, S. Jeon, S. Kwon,W. Jeong, S. Kim, and H. Jeon, “Physical and electrical properties of hafnium–zirconium–oxide films grown by atomic layer deposition,” J. Electrochem. Soc., vol. 155, no. 9, pp. H633–H637, 2008.
    [2.11] Y. H.Wu, C. K. Kao, B. Y. Chen, Y. S. Lin, M. Y. Li, and H. C.Wu, “High density metal–insulator–metal capacitor based on ZrO2/Al2O3/ZrO2 laminate dielectric,” Appl. Phys. Lett., vol. 93, no. 3, p. 033 511, Jul. 2008.
    [2.12] T. B. Massalski, Ed., Binary Alloy Phase Diagrams, vol. 2., 2nd ed. Materials Park, OH: ASM, 1990, pp. 2097–2940.
    [2.13] R. Nieh, S. Krishnan, H. J. Cho, C. S. Kang, S. Gopalan, K. Onishi, R. Choi, and J. C. Lee, “Comparison between ultra-thin ZrO2 and ZrOxNy gate dielectrics in TaN or poly-gated NMOSCAP and NMOSFET devices,” in VLSI Symp. Tech. Dig., 2002, pp. 186–187.
    [3.1] G. Zhang, W. S. Hwang, S. M. Bobadel, S.-H. Lee, B.-J. Cho, and W. J. Yoo, “Novel ZrO2/Si3N4 dual charge storage layer to form step up potential wells for highly reliable multi-level cell application,” in IEDM Tech. Dig., 2007, pp. 83–86.
    [3.2] H. J. Yang, A. Chin, S. H. Lin, F. S. Yeh, and S. P.McAlister, “Improved high temperature retention for charge-trapping memory by using double quantum barriers,” IEEE Electron Device Lett., vol. 29, no. 4, pp. 386–388, Apr. 2008.
    [3.3] H. J. Yang, C. F. Cheng, W. B. Chen, S. H. Lin, F. S. Yeh, S. P. McAlister, and A. Chin, “Comparison of MONOS memory device integrity when using Hf1−x−yNxOy trapping layers with different N compositions,” IEEE Trans. Electron Devices, vol. 55, no. 6, pp. 1417–1423, Jun. 2008.
    [3.4] X. Zhao and D. Vanderbilt, “Phonons and lattice dielectric properties of zirconia,” Phys. Rev. B, Condens. Matter, vol. 65, no. 7, p. 075 105, Feb. 2002.
    [3.5] Y. H. Wu, L. L. Chen, Y. S. Lin, M. Y. Li, and H. C. Wu, “Nitrided tetragonal ZrO2 as the charge-trapping layer for nonvolatile memory application,” IEEE Electron Device Lett., vol. 30, no. 12, pp. 1290–1292, Dec. 2009.
    [3.6] M. A. Signore, A. Rizzo, L. Mirenghi, M. A. Tagliente, and A. Cappello, “Characterization of zirconium oxynitride films obtained by radio frequency magnetron reactive sputtering,” Thin Solid Films, vol. 515, no. 17, pp. 6798–6804, Jun. 2007.
    [3.7] Y. H.Wu, C. K. Kao, B. Y. Chen, Y. S. Lin,M. Y. Li, and H. C.Wu, “High density metal–insulator–metal capacitor based on ZrO2/Al2O3/ZrO2 laminate dielectric,” Appl. Phys. Lett., vol. 93, no. 3, p. 033511, Jul. 2008.
    [3.8] A. Rizzo, M. A. Signore, L. Mirenghi, E. Piscopiello, and L. Tapfer, “Physical properties evolution of sputtered zirconium oxynitride films: Effects of the growth temperature,” J. Phys. D, Appl. Phys., vol. 42, no. 23, p. 235 401, Dec. 2009.
    [3.9] J. Robertson, “High dielectric constant oxides,” Eur. Phys. J. Appl. Phys., vol. 28, no. 3, pp. 265–291, Dec. 2004.
    [3.10] D. K. Chen, F. E.Mamouni, X. J. Zhou, R. D. Schrimpf, D.M. Fleetwood, K. F. Galloway, S. Lee, H. Seo, G. Lucovsky, B. Jun, and J. D. Cressler, “Total dose and bias temperature stress effects for HfSiON on Si MOS capacitors,” IEEE Trans. Nucl. Sci., vol. 54, no. 6, pp. 1931– 1937, Dec. 2007.
    [3.11] A. Chin, C. C. Laio, C. Chen, K. C. Chiang, D. S. Yu, W. J. Yoo, G. S. Samudra, T. Wang, I. J. Hsieh, S. P. McAlister, and C. C. Chi, “Low voltage high speed SiO2/AlGaN/AlLaO3/TaN memory with good retention,” in IEDM Tech. Dig., 2005, pp. 165–168.
    [3.12] C. H. Lai, A. Chin, H. L. Kao, K. M. Chen, M. Hong, J. Kwo, and C. C. Chi, “Very low voltage SiO2/HfON/HfAlO/TaN memory with fast speed and good retention,” in VLSI Symp. Tech. Dig., 2006, pp. 44–45.
    [4.1] B. H. Lee, L. Kang, R. Nieh, W. J. Qi, and J. C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing,” Appl. Phys. Lett., vol. 76, no. 14, pp. 1926–1928, Apr. 2000.
    [4.2] R. Nieh, S. Krishnan, H.-J. Cho, C. S. Kang, S. Gopalan, K. Onishi, R. Choi, and J. C. Lee, “Comparison between ultra-thin ZrO2 and ZrOxNy gate dielectrics in TaN or poly-gated NMOSCAP and NMOSFET devices,” in VLSI Symp. Tech. Dig., 2002, pp. 186–187.
    [4.3] M. H. Cho, H. S. Chang, Y. J. Cho, D. W. Moon, K. H. Min, R. Sinclair, S. K. Kang, D. H. Ko, J. H. Lee, J. H. Gu, and N. I. Lee, “Change in the chemical state and thermal stability of HfO2 by the incorporation of Al2O3,” Appl. Phys. Lett., vol. 84, no. 4, pp. 571–573, Jan. 2004.
    [4.4] A. Chin, C. C. Liao, C. H. Lu, W. J. Chen, and C. Tsai, “Device and reliability of high-k Al2O3 gate dielectric with good mobility and low Dit,” in VLSI Symp. Tech. Dig., 1999, pp. 135–136.
    [4.5] K. Kita, K. Kyuno, and A. Toriumi, “Permittivity increase of yttriumdoped HfO2 through structural phase transformation,” Appl. Phys. Lett., vol. 86, no. 10, p. 102 906, Mar. 2005.
    [4.6] K. Tomida, K. Kita, and A. Toriumi, “Dielectric constant enhancement due to Si incorporation into HfO2,” Appl. Phys. Lett., vol. 89, no. 14, p. 142 902, Oct. 2006.
    [4.7] Y. Zhao, K. Kita, K. Kyuno, and A. Toriumi, “Higher-κ LaYOx films with strong moisture resistance,” Appl. Phys. Lett., vol. 89, no. 25, p. 252 905, Dec. 2006.
    [4.8] R. I. Hegde, D. H. Triyoso, S. B. Samavedam, and B. E. White, Jr., “Hafnium zirconate gate dielectric for advanced gate stack applications,” J. Appl. Phys., vol. 101, no. 7, p. 074113, Apr. 2007.
    [4.9] J. Robertson, “Maximizing performance for higher κ gate dielectrics,” J. Appl. Phys., vol. 104, no. 12, p. 124 111, Dec. 2008.
    [4.10] H. Jiang, R. I. Gomez-Abal, P. Rinke, and M. Scheffler, “Electronic band structure of zirconia and hafnia polymorphs from the GW perspective,” Phys. Rev. B, Condens. Matter, vol. 81, no. 8, p. 085119, Feb. 2010.
    [4.11] Y. H.Wu, C. K. Kao, B. Y. Chen, Y. S. Lin, M. Y. Li, and H. C.Wu, “High density metal-insulator-metal capacitor based on ZrO2/Al2O3/ZrO2 laminate dielectric,” Appl. Phys. Lett., vol. 93, no. 3, p. 033511, Jul. 2008.
    [4.12] Y. H. Wu, L. L. Chen, Y. S. Lin, M. Y. Li, and H. C. Wu, “Nitrided tetragonal ZrO2 as the charge-trapping layer for nonvolatile memory application,” IEEE Electron Device Lett., vol. 30, no. 12, pp. 1290–1292, Dec. 2009.
    [4.13] M. Gutowskia, J. E. Jaffe, C. L. Liu, M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, “Thermodynamic stability of high-κ dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2,” Appl. Phys. Lett., vol. 80, no. 11, pp. 1897–1899, Mar. 2002.
    [4.14] W. J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, K. Onishi, T. Ngai, S. Banerjee, and J. C. Lee, “MOSCAP and MOSFET characteristics using ZrO2 gate dielectric deposited directly on Si,” in IEDM Tech. Dig., 1999, pp. 145–148.
    [4.15] S. Shen, Y. Liu, R. G. Gordon, and L. J. Brillson, “Impact of ultrathin Al2O3 diffusion barriers on defects in high-κ LaLuO3 on Si,” Appl. Phys. Lett., vol. 98, no. 17, p. 172902, Apr. 2011.
    [4.16] R. Katamreddy, R. Inman, G. Jursich, A. Soulet, and C. Takoudis, “Controlling interfacial reactions between HfO2 and Si using ultrathin Al2O3 diffusion barrier layer,” Appl. Phys. Lett., vol. 89, no. 26, p. 262 906, Dec. 2006.
    [4.17] M. K. LEE and C. F. YEN, “Electrical improvement of fluorine-passivated metal–organic chemical vapor deposited TiO2 film on (NH4)2Sx-treated GaAs,” Jpn. J. Appl. Phys., vol. 46, no. 47, pp. L1173-L1175, Nov. 2007.
    [4.18] R. E. Nieh, C. S. Kang, H.-J. Cho, K. Onishi, R. Choi, S. Krishnan, J. H. Han, Y.-H. Kim, M. S. Akbar, and J. C. Lee, “Electrical characterization and material evaluation of zirconium oxynitride gate dielectric in TaN-gated NMOSFETs with high-temperature forming gas annealing,” IEEE Trans. Electron Devices, vol. 50, no. 2, pp. 333–340, Feb. 2003.
    [4.19] C. Choi, C. S. Kang, C. Y. Kang, R. Choi, H. J. Cho, Y. H. Kim, S. J. Rhee, M. Akbar, and J. C. Lee, “The effects of nitrogen and silicon profile on high-κ MOSFET performance and bias temperature instability,” in VLSI Symp. Tech. Dig., 2004, pp. 214–215.
    [5.1] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys, vol. 89, no. 10, pp. 5243–5275, May 2001.
    [5.2] X. Zhao and D. Vanderbilt, “Phonons and lattice dielectric properties of zirconia,” Phys. Rev. B, Condens. Matter, vol. 65, no. 7, p. 075 105, Feb. 2002.
    [5.3] D. Fischer and A. Kersch, “The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles,” Appl. Phys. Lett., vol. 92, no. 1, p. 012 908, Jan. 2008.
    [5.4] C. Z. Zhao, S. Taylor, M. Werner, P. R. Chalker, R. T. Murray, J. M. Gaskell, and A. C. Jones, “Dielectric relaxation of lanthanum doped zirconium oxide,” J. Appl. Phys., vol. 105, pp. 044102-1–044102-8, Feb. 2009.
    [5.5] D. Tsoutsou, G. Apostolopoulos, S. F. Galata, P. Tsipas, A. Sotiropoulos, G. Mavrou, Y. Panayiotatos, A. Dimoulas, A. Lagoyannis, A. G. Karydas, V. Kantarelou, and S. Harissopoulos “Dielectric relaxation of lanthanum doped zirconium oxide, ” Stabilization of very high-k tetragonal phase in Ge-doped ZrO2 films grown by atomic oxygen beam deposition, ” J. Appl. Phys., vol. 106, p.024107, Jul. 2009.
    [5.6] Y. H. Wu, L. L. Chen, R. J. Lyu, M. Y. Li, and H. C. Wu, “Tetragonal ZrO2 /Al2O3 stack as high-κ gate dielectric for Si-based MOS devices,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 1014–1016, Sep. 2010.
    [5.7] Y. H. Wu, M. L. Wu, J. R. Wu, and L. L. Chen, “Ge-stabilized tetragonal ZrO2 as gate dielectric for Ge metal-oxide-semiconductor capacitors fabricated on Si substrate,” Appl. Phys. Lett., vol. 97, p. 043503, Jul. 2010.
    [5.8] T. Hosoi, M. Saeki, Y. Oku, H. Arimura, N. Kitano, K. Shiraishi, K. Yamada, T. Shimura, and H. Watanabe, “Comprehensive Study and Control of Oxygen Vacancy Induced Effective Work Function Modulation in Gate-First High-k/Metal Inserted Poly-Si Stacks,” in Proc. IEEE Symp. VLSI Tech. Dig., 2010, pp. 179-180.
    [5.9] K. McKenna, A. Shluger, V. Iglesias, M. Porti, M. Nafria, M. Lanza, G. Bersuker, “Grain boundary mediated leakage current in polycrystalline HfO2 films,” Microelectron. Eng., vol. 88, pp. 1272-1275, 2011.
    [5.10] R. I. Hegde, D. H. Triyoso, S. B. Samavedam, and B. E. White, Jr., “Hafnium zirconate gate dielectric for advanced gate stack applications,” J. Appl. Phys., vol. 101, no. 7, p. 074113, Apr. 2007.
    [5.11] X. Lu, K. Maruyama, and H. Ishiwara, “Characterization of HfTaO films for gate oxide and metal-ferroelectric-insulator-silicon device applications,” J. Appl. Phys., vol. 103, pp. 044105-1–044105-5, Feb. 2008.
    [5.12] R. E. Nieh, C. S. Kang, H. J. Cho, K. Onishi, R. Choi, S. Krishnan, J. H. Han, Y. H. Kim, M. S. Akbar, and J. C. Lee, “Electrical characterization and material evaluation of zirconium oxynitride gate dielectric in TaN-gated NMOSFETs with high-temperature forming gas annealing,” IEEE Trans. Electron Devices, vol. 50, no. 2, pp. 333–340, Feb. 2003.
    [5.13] J. S. Lee, Y. H. Lee, K. Hess, “A thorough study of hydrogen-related gate oxide degradation in deep submicron MOSFET’s with deuterium treatment process,” Solid State Electron., vol. 50, pp. 149-154, 2006.
    [5.14] M. S. Rahman, H. Park, M. Chang, D. Lee, B. H. Lee, and H. Hwanga, “Enhanced Reliability and Performance of High-κ MOSFET by Two-Step Annealing,” Electrochem. Solid-State Lett, vol. 9, no. 4, pp. G127-G129, Feb, 2006.
    [5.15] C.Y. Chang, S. M. Sze, ULSI Devices, John Wiley & Sons Inc., 2000, p. 321.
    [6.1] J. Robertson, “High dielectric constant oxides,” Eur. Phys. J. Appl. Phys., vol. 28, pp. 265–291, Dec. 2004.
    [6.2] M. Chudzik, B. Doris, R. Mo, J. Sleight, E. Cartier, C. Dewan, D. Park, H. Bu, W. Natzle, W. Yan, C. Ouyang, K. Henson, D. Boyd, S. Callegari, R. Carter, D. Casarotto, M. Gribelyuk, M. Hargrove, W. He, Y. Kim, B. Linder, N. Moumen, V. K. Paruchuri, J. Stathis, M. Steen, A. Vayshenker, X. Wang, S. Zafar, T. Ando, R. Iijima, M. Takayanagi, V. Narayanan, R.Wise,Y. Zhang, R. Divakaruni,M.Khare, and T. C. Chen, “High-performance high-κ/metal gates for 45 nm CMOS and beyond with gate-first processing,” in Proc. IEEE Symp. VLSI Tech. Dig., 2007, pp. 194–195.
    [6.3] H. Wong and H. Iwai, “On the scaling issues and high-κ replacement of ultrathin gate dielectrics for nanoscale MOS transistors,” Microelectron. Eng, vol. 83, pp. 1867–1904, Mar. 2006.
    [6.4] M. Gutowski, J. E. Jaffe, C. L. Liu,M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, “Thermodynamic stability of high-κ dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2 ,” Appl. Phys. Lett., vol. 80, no. 11, pp. 1897–1899, Mar. 2002.
    [6.5] Y. H. Wu, L. L. Chen, R. J. Lyu, M. Y. Li, and H. C. Wu, “Tetragonal ZrO2 /Al2O3 stack as high-κ gate dielectric for Si-based MOS devices,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 1014–1016, Sep. 2010.
    [6.6] H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, I. Kashiwagi, J. Taguchi, H. Yamamoto, J. Tonotani, Y. Kim, I. Ueda, A. Kuriyama, and Y. Yoshihara, “Advanced gated dielectric materials for sub-100 nm CMOS,” in Proc. Int. Electron Devices Meet. Tech. Dig., 2002, pp. 625–628.
    [6.7] Y. H. Wu, M. Y. Yang, A. Chin, W. J. Chen, and C. M. Kwei, “Electrical characteristics of high quality La2O3 gate dielectric with equivalent oxide thickness of 5 Å ,” IEEE Electron Device Lett., vol. 21, no. 7, pp. 341–343, Jul. 2000.
    [6.8] S. W. Kang and S. W. Rhee, “Deposition of La2O3 films by direct liquid injection metal organic chemical vapor deposition,” J. Electrochem. Soc., vol. 149, no. 6, pp. C345–C348, Apr. 2002.
    [6.9] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys, vol. 89, no. 10, pp. 5243–5275, May 2001.
    [6.10] A. Chin and S. P. Mcalister, “The power of functional scaling-beyond the power consumption challenge and the scaling roadmap,” IEEE Circuits Devices Mag., vol. 21, no. 1, pp. 27–35, Jan./Feb. 2005.
    [6.11] J. M. J. Lopes, M. Roeckerath, T. Heeg, U. Littmark, J. Schubert, S.Mantl, Y. Jia, and D.G. Schlom, “La-based ternary rare-earth oxides as alternative high-κ dielectrics,” Microelectron. Eng, vol. 84, pp. 1890–1893, Sep. 2007.
    [6.12] X. P. Wang, C. Shen, M. F. Li, H. Y. Yu, Y. Sun, Y. P. Feng, A. Lim, H. W. Sik, A. Chin, Y. C. Yeo, P. Lo, and D. L. Kwong, “Dual metal gates with band-edge work functions on novel HfLaO high-κ gate dielectric,” in Proc. IEEE Symp. VLSI Tech. Dig., 2006, pp. 9–10.
    [6.13] Y. Shin, K. K.Min, S. H. Lee, S. K. Lim, J. S. Oh, K. J. Lee, K. Hong, and B. J. Cho, “Crystallized HfLaO embedded tetragonal ZrO2 for dynamic random access memory capacitor dielectrics,” Appl. Phys. Lett., vol. 98, pp. 173505-1–173505-3, 2011.
    [6.14] L. Y. Huang, A. D. Li, W. Q. Zhang, H. Li, Y. D. Xia, and D. Wu, “Fabrication and characterization of La-doped HfO2 gate dielectrics by metal-organic chemical vapor deposition,” Appl. Surf. Sci., vol. 256, pp. 2496–2499, 2010.
    [6.15] J. K. Park, Y. Park, M. H. Song, S. K. Lim, J. S. Oh, M. S. Joo, K. Hong, and B. J. Cho, “Cubic-structured HfLaO for the blocking layer of a charge-trap type flash memory device,” Appl. Phys. Exp., vol. 3, pp. 091501-1– 091501-3, 2010.
    [6.16] C. Wiemer, A. Lamperti, L. Lamagna, O. Salicio, A. Molle, and M. Fanciulli, “Detection of the tetragonal phase in atomic layer deposited La-doped ZrO2 thin films on germanium,” J. Electrochem. Soc., vol. 158, no. 8, pp. G194–G198, 2011.
    [6.17] D. Tsoutsou, L. Lamagna, S. N. Volkos, A. Molle, S. Baldovino, S. Schamm, P. E. Coulon, and M. Fanciulli, “Atomic layer deposition of Lax Zr1−xO2−δ (x = 0.25) high-κ dielectrics for advanced gate stacks,” Appl. Phys. Lett., vol. 94, pp. 053504-1–053504-3, Feb. 2009.
    [6.18] O. Bierwagen, L. Geelhaar, X. Gay, M. Pieˇsin¸ ˇs, H. Riechert, B. Jobst, and A. Rucki, “Leakage currents at crystallites in ZrAlxOy thin films measured by conductive atomic-force microscopy,” Appl. Phys. Lett., vol. 90, pp. 232901-1–232901-3, Jun. 2007.
    [6.19] C. Z. Zhao, S. Taylor, M. Werner, P. R. Chalker, R. T. Murray, J. M. Gaskell, and A. C. Jones, “Dielectric relaxation of lanthanum doped zirconium oxide,” J. Appl. Phys., vol. 105, pp. 044102-1–044102-8, Feb. 2009.
    [6.20] M. F. Chang, P. T. Lee, and A. Chin, “Low-threshold-voltage MoN/HfAlO/SiON p-MOSFETs with 0.85-nm EOT,” IEEE Electron Device Lett., vol. 30, no. 8, pp. 861–863, Aug. 2009.
    [6.21] J.W. Seo, J. Fompeyrine, A. Guiller, G. Norga, C.Marchiori, H. Siegwart, and J.-P. Locquet, “Interface formation and defect structures in epitaxial La2Zr2O7 thin films on (111) Si,” Appl. Phys. Lett., vol. 83, no. 25, pp. 5211–5213, Dec. 2003.
    [6.22] W. He, D. S. H. Chan, S. J. Kim, Y. S. Kim, S. T. Kim, and B. J. Cho, “Process and material properties of HfLaOx prepared by atomic layer deposition,” J. Electrochem. Soc., vol. 155, no. 10, pp. G189–G193, Aug. 2008.
    [6.23] H. N. Alshareef, H. R. Harris, H. C.Wen, C. S. Park, C. Huffman, K. Choi, H. F. Luan, P. Majhi, B. H. Lee, R. Jammy, D. J. Lichtenwalner, J. S. Jur, and A. I. Kingon, “Thermally stable N-metal gate MOSFETs using Laincorporated HfSiO dielectric,” in Proc. IEEE Symp. VLSI Tech. Dig., 2006, pp. 7–8.
    [6.24] M. Copel, S. Guha, N. Bojarczuk, E. Cartier, V. Narayanan, and V. Paruchuri, “Interaction of La2O3 capping layers with HfO2 gate dielectrics,” Appl. Phys. Lett., vol. 95, pp. 212903-1–212903-3, Nov. 2009.
    [6.25] W. J. Maeng,W. H. Kim, and H. Kim, “Flat band voltage (Vfb) modulation by controlling compositional depth profile in La2O3 /HfO2 nanolaminate gate oxide,” J. Appl. Phys., vol. 107, pp. 074109-1–074109-5, Apr. 2010.
    [6.26] D. R´ebiscoul, S. Favier, J.-P. Barnes, J. W. Maes, and F. Martin, “Characterization of the annealing impact on La2O3 /HfO2 and HfO2 /La2O3 stacks for MOS applications,” Microelectron. Eng., vol. 87, pp. 278–281, Jun. 2010.
    [6.27] C. K. Lee, E. Cho, H. S. Lee, C. S. Hwang, and S. Han, “First-principles study on doping and phase stability of HfO2 ,” Phys. Rev. B, vol. 78, pp. 012102-1–012102-4, Jul. 2008.
    [6.28] Y. H. Wu, L. L. Chen, Y. S. Lin, M. Y. Li, and H. C. Wu, “Nitrided tetragonal ZrO2 as the charge-trapping layer for nonvolatile memory application,” IEEE Electron Device Lett., vol. 30, no. 12, pp. 1290–1292, Dec. 2009.
    [6.29] Y. H.Wu, C. K. Kao, B. Y. Chen, Y. S. Lin, M. Y. Li, and H. C.Wu, “High density metal-insulator-metal capacitor based on ZrO2 /Al2O3 /ZrO2 laminate dielectric,” Appl. Phys. Lett., vol. 93, pp. 033511-1–033511-3, Jul. 2008.
    [6.30] J. H. Hong, W. J. Choi, and J. M. Myoung, “Properties of ZrO2 dielectric layers grown by metal organic molecular beam epitaxy,” Microelectron. Eng., vol. 70, pp. 35–40, 2003.
    [6.31] D. Martin, M. Grube, W. Weinreich, J. M¨uller, L. Wilde, E. Erben, W. M. Weber, J. Heitmann, U. Schr¨oder, T. Mikolajick, and H. Riechert, “Macroscopic and microscopic electrical characterizations of high-κ ZrO2 and ZrO2 /Al2O3 /ZrO2 metal-insulator-metal structures,” J. Vac. Sci. Technol. B, vol. 29, pp. 01AC02-1–01AC02-8, 2011.
    [6.32] D. A. Neamen, Semiconductor Physics and Devices. Boston, MA: Irwin, 1999, p. 522.
    [6.33] O. Renault, D. Samour, D. Rouchon, Ph. Holliger, A.-M. Papon, D. Blin, and S. Marthon, “Interface properties of ultra-thin HfO2 films grown by atomic layer deposition on SiO2 /Si,” Thin Solid Films, vol. 428, pp. 190– 194, 2003.
    [6.34] S. Ramanathan, C. M. Park, and P. C. McIntyre, “Electrical properties of thin film zirconia grown by ultraviolet ozone oxidation,” J. Appl. Phys., vol. 91, no. 7, pp. 4521–4527, Apr. 2002.
    [6.35] V. Ioannou-Sougleridis, G. Vellianitis, and A. Dimoulas, “Electrical properties of Y2O3 high-κ gate dielectric on Si (001): The influence of post metallization annealing,” J. Appl. Phys., vol. 93, no. 7, pp. 3982–3989,Apr. 2003.
    [6.36] K. Bera, C. Mahata, A. K. Chakraborty, S. J. Nandi, J. N. Tiwari, J. Y. Hung, and C. K. Maiti, “TiO2 /GeOxNy stacked gate dielectrics for Ge-MOSFETs,” Semicond. Sci. Technol., vol. 22, pp. 1352–1361, Nov. 2007.
    [6.37] Z. Luo and T. P. Ma, “A new method to extract EOT of ultrathin gate dielectric with high leakage current,” IEEE Electron Device Lett, vol. 25, no. 9, pp. 655–657, Sep. 2004.
    [6.38] Y. Lu, S. Hall, L. Z. Tan, I. Z. Mitrovic, W. M. Davey, B. Raeissi, O. Engstr¨om, K. Cherkaoui, S. Monaghan, P. K. Hurley, H. D. B. Gottlob, and M. C. Lemme, “Leakage current effects on C-V plots of high-κ metal-oxide-semiconductor capacitors,” J. Vac. Sci. Technol. B, vol. 27, pp. 352–355, Feb. 2009.
    [6.39] R. Jiang and Z. Li, “Interfacial growth at the HfO2 /Si interface during annealing in oxygen ambient,” Semicond. Sci. Technol., vol. 24, pp. 065006- 1–065006-4, May 2009.
    [6.40] E. H. Nicollian and J. R. Brews, MOS Physics and Technology. New York: Wiley, 1982, p. 196.
    [6.41] M. Yamaoka, H. Murakami, and S. Miyazaki, “Diffusion and incorporation of Zr into thermally grown SiO2 on Si(1 0 0),” Appl. Surf. Sci., vol. 216, pp. 223–227, 2003.
    [6.42] Y. H.Wu, C. L.Ku, and J. F.Wang, “Boron-retarded gate dielectric formed by dry oxidation of thermal nitride,” J. Electrochem. Soc, vol. 151, no. 1, pp. F1–F6, 2004.
    [6.43] S. A. Shevlin, A. Curioni, and W. Andreoni, “Ab initio design of high-κ dielectrics: LaxY1−x AlO3 ,” Phys. Rev. Lett., vol. 94, pp. 146401-1– 146401-4, Apr. 2005.
    [6.44] J. Robertson, “Maximizing performance for higher κ gate dielectrics,” J. Appl. Phys., vol. 104, pp. 124111-1–124111-7, Dec. 2008.
    [6.45] C. A. Richter, A. R. Hefner, and E.M. Vogel, “A comparison of quantum mechanical capacitance–voltage simulators,” IEEE Electron Device Lett., vol. 22, no. 1, pp. 35–37, Jan. 2001.
    [6.46] J. Lu and Y. Kuo, “Hafnium-doped tantalum oxide high-κ dielectrics with sub-2 nm equivalent oxide thickness,” Appl. Phys. Lett., vol. 87, pp. 232906-1–232906-3, 2005.
    [6.47] C. Wiemer, L. Lamagna, S. Baldovino, M. Perego, S. S. Chardon, P. E. Coulon, O. Salicio, G. Congedo, S. Spiga, andM. Fanciulli, “Dielectricproperties of Er-doped HfO2 (Er∼15%) grown by atomic layer deposition for high-κ gate stacks,” Appl. Phys. Lett., vol. 96, no. 8, pp. 182901-1–182901-3, 2010.
    [6.48] G. Lucovsky and G. B. Rayner, “Microscopic model for enhanced dielectric constants in low concentration SiO2 -rich noncrystalline Zr and Hf silicate alloys,” Appl. Phys. Lett., vol. 77, pp. 2912–2914, Oct. 2000.
    [6.49] S. S. Huang and T. B. Wu, “Thickness dependence of structural and electrical characteristics of ZrO2 thin films as grown on Si by chemical vapor deposition,” J. Vac. Sci. Technol. B, vol. 22, pp. 1940–1948, Aug. 2004.
    [6.50] C. H. Chen, K. C. Chuang, and J. G. Hwu, “Characterization of inversion tunneling current saturation behavior for MOS(p) capacitors with ultrathin oxides and high-κ dielectrics,” IEEE Trans. Electron Devices, vol. 56, no. 6, pp. 1262–1267, Jun. 2009.
    [6.51] R. E. Nieh, C. S. Kang, H. J. Cho, K. Onishi, R. Choi, and S. Krishnan, “Electrical characterization and material evaluation of zirconium oxynitride gate dielectric in TaN-gated NMOSFETs with high-temperature forming gas annealing,” IEEE Trans. Electron Devices, vol. 50, no. 2, pp. 333–340, Feb. 2003.
    [6.52] C. H. Wu, B. F. Hung, A. Chin, S. J. Wang, W. J. Chen, X. P. Wang, M.-F. Li, C. Zhu, Y. Jin, H. Tao, S. C. Chen, and M. S. Liang, “High temperature stable [Ir3 Si-TaN]/HfLaON CMOS with large work-function difference,” in Proc. Int. Electron Devices Meet. Tech. Dig., 2006, pp. 1–4.
    International Technology Roadmap for Semiconductors.
    [7.2] D. Dornisch, G. Wilk, G. Li, M. Ring, D. J. Howard, and Racanelli, “Investigation of scaling limits for PECVD SiN and ALD HfO2/Al2O3 integrated MIM capacitors,” ECS transcations, vol. 6, pp. 775-772, 2007.
    [7.3] C. H. Cheng, H. C. Pan, C. C. Huang, C. P. Chou, C. N. Hsiao, J. Hu, M. Hwang, T. Arikado, S. P. McAlister, and A. Chin, “Improvement of the performance of TiHfO MIM capacitors by using a dual plasma treatment of the lower electrode,” IEEE Electron Device Lett., vol. 29, no. 10, pp. 1105-1107, Oct. 2008.
    [7.4] K. C. Chiang, C. H. Cheng, K. Y. Jhou, H. C. Pan, C. N. Hsiao, C. P. Chou, S. P. McAlister, Albert Chin, and H. L. Hwang, “Use of a high-work-function Ni electrode to improve the stress reliability of analog SrTiO3 metal-insulator-metal capacitors,” IEEE Electron Device Lett., vol. 28, no. 8, pp. 694-696, Aug. 2007.
    [7.5] Y. H. Wu, C. C. Lin, Y. C. Hu, M. L. Wu, J. R. Wu, and L. L. Chen, “High-performance metal-insulator-metal capacitor using stacked TiO2/Y2O3 as insulator,” IEEE Electron Device Lett., vol. 32, no. 8, pp. 1107-1109, Aug. 2011.
    [7.6] S. H. Lin, K. C. Chiang, A. Chin, and F. S. Yeh, “High-density and low-leakage-current MIM capacitor using stacked TiO2/ZrO2 insulators,” IEEE Electron Device Lett., vol. 30, no. 7, pp. 715-717, Jul. 2009.
    [7.7] S. J. Kim, B. J. Cho, M. F. Li, S. J. Ding, M. B. Yu, C. Zhu, A. Chin, and D. L. Kwong, “Engineering of voltage nonlinearity in high-κ MIM capacitor for analog/mixed-signal ICs,” in VLSI Symp. Tech. Dig., 2004, pp. 218-219.
    [7.8] J. D. Chen, J. J. Yang, R. Wise, P. Steinmann, M. B. Yu, C. Zhu, and Y. C. Yeo, “Physical and electrical characterization of metal–insulator–metal capacitors with Sm2O3 and Sm2O3/SiO2 laminated dielectrics for analog circuit applications,” IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2683-2691, Nov. 2009.
    [7.9] Y. H. Wu, W. Y. Ou, C. C. Lin, J. R. Wu, M. L. Wu, and L. L. Chen, “MIM capacitors with crystalline-TiO2/SiO2stack featuring high capacitance density and low voltage coefficient,” IEEE Electron Device Lett., vol. 33, no.1, pp. 104-106, Jan. 2012.
    [7.10] B. Y. Tsui, H. H. Hsu, and C. H. Cheng, “High-performance metal-insulator-metal capacitors with HfTiO/Y2O3 stacked dielectric,” IEEE Electron Device Lett., vol. 31, no. 8, pp. 875-877, Aug. 2010.
    [7.11] H. H. Hsu, C. H. Cheng, and B. Y. Tsui, “High performance metal/insulator/metal capacitors using HfTiO as dielectric,” in Proc. Int. Symp. VLSI Technol., Syst., Appl., 2009, pp. 67-68.
    [7.12] X. Zhao and D. Vanderbilt, “Phonons and lattice dielectric properties of zirconia,” Phys. Rev. B, Condens. Matter, vol. 65, no. 7, p. 075105, Feb. 2002
    [7.13] Y. H. Wu, C. C. Lin, L. L. Chen, Y. C. Hu, J. R. Wu, and M. L. Wu, “High-performance metal-insulator-metal capacitor with Ge-stabilized tetragonal ZrO2/amorphous La-doped ZrO2 dielectric,” Appl. Phys. Lett., vol. 98, no. 1, p. 013506, Jan. 2011.
    [7.14] T. H. Phung, P. Steinmann, R. Wise, Y. C. Yeo, and C. Zhu, “Modeling the negative quadratic VCC of SiO2 in MIM capacitor,” IEEE Electron Device Lett., vol. 32, no. 12, pp. 1671-1673, Dec. 2011.
    [7.15] P. Gonon and C. Vallee, “Modeling of nonlinearities in the capacitance-voltage characteristics of high-κ metal-insulator-metal capacitors,” Appl. Phys. Lett., vol. 90, p. 142906, 2007.
    [7.16] T. H. Phung, D. K. Srinivasan, P. Steinmann, R. Wise,M. B. Yu, Y. C. Yeo,and C. Zhu, “High performance metal-insulator-metal capacitors with Er2O3 on ALD SiO2 for RF applications,” J. Electrochem. Soc., vol. 158, no. 12, pp. H1289-H1292, 2011.
    [7.17] V. Mikhelashvili, P. Thangadurai, W. D. Kaplan, and G. Eisenstein, “High capacitance density metal-insulator-metal structures based on a high-κ HfNxOy-SiO2-HfTiOy laminate stack,” Appl. Phys. Lett., vol. 92, p. 132902, 2008.
    [7.18] M. K. Hota, C. Mahata, M. K. Bera, S. Mallik, C. K. Sarkar, S. Varma,and C. K. Maiti, “Preparation and characterization of TaAlOx high-κ dielectric for metal–insulator–metal capacitor applications,” Thin Solid Films, vol. 519, no. 1, pp. 423–429, Oct. 2010.
    [7.19] G. D. Wilk, R. M. Wallace, and J. M. Anthnoy, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, pp.5243-5275, May. 2001.
    [7.20] N. J. Seong, S. G. Yoona, S. J. Yeom, H. K. Woo, D. S. Kil, J. S. Roh, and H. C. Sohn, “Effect of nitrogen incorporation on improvement of leakage properties in high-k HfO2 capacitors treated by N2-plasma,” Appl. Phys. Lett., vol. 87, p. 132903, Sep. 2005.
    [7.21] J. J. Yang, J. D. Chen, R. Wise, P. Steinmann, Y. C. Yeo, and C. Zhu, “Performance improvement of Sm2O3 MIM capacitors by using plasma treatment after dielectric formation,” IEEE Electron Device Lett., vol. 30, no. 10, pp. 1033-1035, Oct. 2009.
    [7.22] J. R. Wu, Y. H. Wu, C. C. Lin, W. Y. Ou, M. L. Wu, and L. L. Chen, “Effect of nitrogen passivation on the performance of MIM capacitors with crystalline-TiO2/SiO2 stacked insulator,” IEEE Electron Device Lett., vol. 33, no.6, pp. 878-880, Jun. 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE