研究生: |
葉昭輝 Ye, Jhao-Huei |
---|---|
論文名稱: |
有機自旋閥 (CrO2 / C60 / CrO2) 元件製備與傳輸特性之研究 Preparation and transport properties of organic spin valve CrO2 / C60 / CrO2 |
指導教授: |
邱博文
Chiu, Po-Wen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 115 |
中文關鍵詞: | 單字旋金屬 、有機半導體 、自旋電子學 、碳60 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用碳材料 (奈米碳管) 做為通道,研究電子自旋傳輸始於 1999 年,多數的研究以鈷鎳或鎳鐵合金等磁性金屬做為電極,注入極化電子。本論文則利用有機半導體碳60 (C60) 做為自旋電子之傳輸通道並與單自旋金屬 (CrO2) 電極結合,這是前所未見的實驗。首章初談碳材料與單自旋金屬的特性,往後的章節將依序介紹自旋電子學,實驗的製成步驟,以及元件的量測等內容。
西元1957年,諾貝爾物理獎頒給電晶體發明者,Shockley、Bardeen、 Barttain,同時也宣告電晶體時代的來臨,比起真空管,電晶體擁有更多的優點,如體積小、損耗功率低、以及更高速的運作等優點。然而一般的電晶體都是利用閘極來控制電子是否通過源汲與汲極間的通道,在此和以往不同,我們將利用電子自旋的特性來製成自旋電子元件,由電子自旋方向來決定,電子是否通過富勒烯 C60 所製成的通道,並藉由自旋之方向重新定義元件的開關。
在第一章中,我們介紹碳材料與 C60 的基本物理特性,包括晶格結構,電子能帶結構,電特性,以及磁學中的基本物理觀念,此本章節裡也將詳盡介紹在奈米電子元件中的量子傳輸之特性。第二章將論述電子自旋傳輸之基本物理現象,包含磁阻、自旋散射、自旋注入,以及自旋傳輸與偵測,而以往利用磁性物質將自旋電子注入至半導體中,最大的困難就是鐵磁性物質與半導體間的導值不匹配的問題,我們將利用單自旋金屬 (half-metal) , Chromium dioxide (CrO2) ,來解決這個問題,CrO2 是一新穎的單自旋金屬材料,其擁有接近 100\% 的電子自旋極化率。這裡我們將探討在自旋注入中所面臨的阻礙與自旋偵測時在局部性 (local) 以及非局部性 (non-local) 測量上的差異。在第三章中,我們將詳盡描述自旋電子元件的製作方法,首先利用化學氣相沉積法成長 CrO2 薄膜,並利用選擇性成長技術,成功的將 CrO2 薄膜圖紋化,過程中主要是利用電子束微影技術,爾後蒸鍍鋁金屬,先完成圖紋化結構,最後在沉積 CrO2 薄膜於基板上,在有鋁金屬的地方 CrO2 將不會成長於上方,進而得到選擇性成長的半自旋金屬之薄膜,利用此優點可以將兩電極之距離縮短至 200-300\,nm 以內,使得更有利於自旋傳輸之量測,最後進入到低溫系統進行量測。第四章將論述我們實驗室自己成長的單自旋金屬-CrO2 ,探討利用電子顯微鏡 (SEM) 與 X-ray 繞射、SQUID 磁性分析、以及常溫至低溫的電性傳輸特性之分析結果,以及第五章的結果討論。
[1] Chang, R. Essential Chemistry (McGraw-Hill Higher Education, 2000).
[2] "http://ac16.uni-paderborn.de/lehrveranstaltungen/n
aac/vorles/skript/kapn 4/kap4n 1/vsepr.html." .
[3]http://www.grenvillescience.com/chemistry/y6l/asdef.html.
[4] http://userpage.chemie.fu-berlin.de/ nabram/en learn-
ing/html/org grund/an 3b.htm. .
[5] Graphite characteristics. http://www.n-kokuen.com/e/whatis/index.htm .
[6] Structure of diamond. http://newton.ex.ac.uk/research/qsystems/people
/sque/diamond/structure/ .
[7] H. K.Kroto, J. R. H. & O'Brien, S. C60: Buckminsterfullerene.Nature 318, 162 (1985).
[8] Iijima, S. & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993).
[9] Chiu, P. W. Introduction to Nanoelectronic Devices (NTHU, 2005).
[10] A.L. Kalamkarova, S. R. V. V., A.V. Georgiadesa & Ghasemi-Nejhad, M. Analytical and numerical techniques to predict carbon nanotubes properties. Solids and Structures 43, 6832{6854 (2006).
[11] Hffman, D. R. Solid C60. PHYSICS TODAY 22{29 (1991).
[12] R. E. Haufler, J. C. et al. Efficient produetion of
C60(buckminsterfullerene), C60H36, and the solvated buckide ion. J. Phys. Chem. 94, 8634{8636 (1990).
[13] Haddon, R. C. et al. Conducting
lms of C60, and C70 by alkali-metal doping. Nature 350, 320 (1991).[14] Hebard, A. F. Superconductivity at 18 k in potassium-doped c60.
Nature 350, 600 (1991).
[15] Haddon, R. C. Conductivity and superconductivity of alkali metal
doped C60. Nature 350, 320 (1991).
[16] Holczer, K. Alkali-fulleride superconductors: synthesis, composi-
tion, and diamagnetic shielding. Science 252, 1154 (1991).
[17] M. S. Dresselhaus, P. C. E., G. D. Dresselhaus. Science of Fullerenes
and Carbon Nanotube (Academic Press, 1996).
[18] Prassides, K. Neutron scattering and sr studies of fullerenes and
their derivatives. Physica Scripta. T49, 735 (1993).
[19] Prassides, K. et al. Fullerenes and fullerides in the solid state: Neutron scattering studies. Carbon 30, 1277 (1992).
[20] Takayanagi, K. Suspended gold nanowires:ballistic transport of elec-
trons. JSAP International 3, 3 (2001).
[21] Coey, J. M. D. & Venkatesan, M. Half-metallic ferromagnetism:
Example of CrO2 (invited). J. Appl. Phys. 91, 8345 (2002).
[22] Chamberland, B. L. The chemical and physical properties of CrO2
and tetravalent chromium oxide derivatives. Solid State Mater. Sci. 7, 1 (1977).
[23] Stampe, P. A., Kennedy, R. J., Watts, S. M. & von Molna´r, S. Strain effects in thin films of CrO2 on rutile and sapphire substrates. J. Appl. Phys. 89, 7696 (2001).
[24] S. M. Watts, S. W., S. von Moln□r, A. B. & Coey, J. M. D. Evidence for two-band magnetotransport in half-metallic chromium dioxide. Phys. Rev. B 61, 9621 (2000).
[25] Jr., R. J. S. et al. Measuring the spin polarization of a metal with a superconducting point contact. Science 282, 85 (1998).
[26] R. J. Soulen, J. et al. Andreev reflection: A new means to determine the spin polarization of ferromagnetic materials. J. Appl. Phys. 85, 4589 (1999).
[27] Meservey, R. & Tedrow, P. M. Spin-polarized electron tunneling. Phys. Rep. 238, 173 (1994).
[28] Sugawara, T. & Matsushita, M. M. Spintronics in organic pi electronic systems. J. Mater. Chem. 19, 17381753 (2009,).
[29] Nickel, J. Magnetoresistance overview. Hewlett-Packard Company, HPL-95-60, 1{12 (1995).
[30] Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225 (1975).
[31] Miah, M. I. Injection and detection of spin current and spin hall effect in gaas. Materials Letters 60, 2863 (2006).
[32] Jedema, F. J., Filip, A. T. & vanWees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 401, 345 (2001).
[33] Y. Ohno, D. K. Y., Beschoten, B., Matsukura, F., Ohno, H. & Awschalom, D. D. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790 (1999).
[34] Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a di
usive semiconductor. Phys. Rev. B 62, R4790 (2000).
[35] Schmidt, G. & Molenkamp, L. W. A loadline method for determining the effciency of spin injection contacts. Semicond. Sci. Technol. 19, 1161 (2004).
[36] —U˜. Hs³□K□□□eŒ□□³8□□K v. Master's thesis, □'x (2007).
[37] Schmidt, G. & Molenkamp, L. W. Spin injection into semiconductors, physics and experiments. Semicond. Sci. Technol. 17, 310 (2002).
[38] Jedema, F. J., Nijboer, M. S., Filip, A. T. & van Wees, B. J. Spin injection and spin accumulation in all-metal mesoscopic spin valves. Phys. Rev. B 67, 085319 (2003).
[39] Jedema, F. J., Heersche, H. B., Filip, A. T., Baselmans, J. J. A. & van Wees, B. J. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713 (2002).
[40] S. Ishibashi, T. N. & M.satou. Epitaxial growth of ferromagnetic CrO2 films in air. Mat. Res. Bull 14, 51-57 (1979).
[41] Gupta, A., Li, X. W., Guha, S. & Xiao, G. Selective-area and lateral overgrowth of chromium dioxide(CrO2)
lms by chemical vapor deposition. Appl. Phys. Lett. 75, 2996 (1999).
[42] Li, X. W., Gupta, A., McGuire, T. R., Duncombe, P. R. & Xiao, G. Magnetoresistance and hall effect of chromium dioxide epitaxial thin films. J. Appl. Phys. 85, 5585 (1999).
[43] Ivanov, P. G., Watts, S. M. & Lind, D. M. Epitaxial growth of CrO2 thin films by chemical-vapor deposition from a Cr8O21 precursor. J. Appl. Phys. 89, 1035 (2001).
[44] 楊鴻昌. 約瑟夫效應簡介.¬物理會刊, 5卷 4期, 189-193 (1984).
[45] 楊鴻昌. 認識超導量子干涉元件(SQUID). 物理會刊, 11卷 5期, 454-457 (1989).
[46] Kubato, B. Decomposition of higher oxides of chromium under various pressures of oxygen. J. Am. Ceram. Soc. 44, 239 (1961).
[47] Zhang, Q. et al. Magnetization reversal of CrO2 nanomagnet arrays. J. Appl. Phys. 96, 7527 (2004).
[48] Rabe, M. et al. Growth and magnetotransport study of thin ferromagnetic CrO2
lms. J. Phys. 14, 7 (2002).
[49] Cheng, D. K. Field and wave electromagnetics (Addison-Wesley,1989).
[50] Muller, R. S. & Kamins, T. I. Device Electronics for Integrated Circuits (Wiley, 2002).
[51] Lounasmaa, O. V. Dilution refrigeration. J. Phys. E 12, 668-675 (1979).