簡易檢索 / 詳目顯示

研究生: 吳慧音
Wu, Huei-Ing
論文名稱: 以lab-on-a-chip技術平台研究神經軸突之次細胞功能蛋白質體學與其運用
A lab-on-a-chip platform for studying the subcellular functional proteome of neuronal axons and applications
指導教授: 張兗君
Chang, Yen-Chung
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 71
中文關鍵詞: 神經軸突蛋白質體學基板微接觸壓印
外文關鍵詞: neuronal axons, proteome, chip, microcontact printing
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經軸突是由神經元細胞本體延伸而出的細長神經纖維,其在發育階段及神經系統的功能上扮演著不同及重要的角色。本研究發展出一套玻璃基板的裝置,藉以用來生產大量的軸突蛋白以提供做蛋白質與RNA的分析。在玻璃基板的表面上培養大鼠海馬迴的神經細胞,大量的軸突有別於細胞本體貼附的區域,可被分離引導生長至不同的區域。經由免疫螢光染色的研究結果顯示,這些引導軸突生長的區域惟獨只有軸突生長貼附在上,且未有其他樹突結構纖維或神經膠細胞的存在,因此神經軸突在此玻璃基板上可被確實的分離出來,同時可經由自製切割器配合基板後面所設計之線性刻痕,進行玻片切斷與收集次細胞單位樣本的動作。利用一維、二維電泳凝膠法及西方點墨等分析法來研究揭露神經軸突和細胞比較有何不同的蛋白組成,而RT-PCR的分析結果也指出神經軸突局部內含有RNAs的存在。
    上述神經細胞培養基板經由變化修飾後,也可作為評估不同分子對軸突的生長速率及軸突分化成前突觸之能力的定量分析。結果指出,laminin及neuroligin-1能增加軸突的生長,collagen則無明顯增加作用;然而只有neuroligin-1能促進軸突分化成前突觸,laminin和collagen則無觀察到有增加作用的結果。此外,此基板裝置可經由簡易的修飾變化進行其他神經軸突相關的研究,例如軸突結構之分子組成,包括有軸突柄和生長錐等,以及軸突損傷之退化與再生的過程。經由這些多方不同的運用,此基板裝置將可做為一種研究軸突功能蛋白之有力實用的技術平台。


    英文摘要……………………………………………………………………………1 中文摘要…………………………………………………..………………………..3 壹、序論………………………………………………..…………………………..4 貳、材料與方法 一、實驗材料……………………………………………………………………11 二、實驗方法………………………………………………………………..…..12 (一)玻璃基板的設計與製作…………………………………………….….12 (二)印章與模板的設計與製作…………………………………….……….14 (三)微接觸壓印…………………………………………………….……….17 (四)海馬迴神經細胞無血清培養………………….……………………….18 (五)Neuroligin-1轉殖與純化…………………………………………….20 (六)免疫螢光染色…………………………………….…………………….21 (七)FM4-64螢光染劑標定功能測定法…………………………………… 21 (八)利用玻璃基板分離生長錐與神經軸突柄…………….……………….22 (九)氯仿/甲醇蛋白質沉澱法……………………..………………………..23 (十)凝膠電泳分析(SDS-PAGE)……………………………………….…….23 (十一)銀染色法(Silver staining)……………………..………………..24 (十二)西方墨點法(Western blot)……………………………….……….25 (十三)二維蛋白質凝膠電泳(2-D Electrophoresis)………..…………..26 (十四)反轉錄聚合□鏈式反應(reverse transcription-PCR,RT-PCR)..27 (十五)統計分析……………………………………………………….…….28 參、結果 一、神經細胞培養基板的製成………………………………………………29 二、利用神經細胞培養基板可區隔次細胞結構之生長……..……………..30 三、神經細胞培養基板的運用可侷限神經膠細胞的生長區域…..………..31 四、基板刻痕的運用可成功分離次細胞結構…………..…………………..31 五、軸突內蛋白質的分佈有別於細胞體…………………………..………..32 六、Neuroligin-1可增加前突觸的形成……………………………….…..34 七、Neuroligin-1經局部作用影響軸突生長…………….………………..35 八、多種蛋白質分子對神經軸突生長作用的影響………………….……...36 九、神經細胞培養基板可做為量化統計的工具之一………………………37 肆、討論 一、利用神經細胞培養基板裝置可收集足量的次細胞單位樣本…………39 二、神經細胞次細胞等級結構的蛋白質分析………………………………40 三、神經細胞培養基板裝置多元化的運用…………………………………42 四、本方法學未來的展望……………………………………………………44 伍、圖 圖一、神經細胞培養基板裝置的製程………………………………………46 圖二、基板裝置之神經細胞培養與收集軸突樣本…………………………47 圖三、基板切斷器……………………………………………………………48 圖四、神經細胞培養基板裝置之示意圖……………………………………49 圖五、玻璃基板上神經細胞生長在各區域之細胞結構表徵………………50 圖六、神經細胞與神經膠細胞在玻璃基板表面之分佈情形………………52 圖七、經斷裂後的玻片片段上仍各保有不同的神經細胞次單位結構……53 圖八、收集與分析由玻璃基板分離所得的細胞次單位結構樣本…………54 圖九、利用二維凝膠電泳分析法比較軸突與細胞體蛋白質的組成差異…56 圖十、神經軸突在玻璃基板2號區域之生長特性………………..………..57 圖十一、分佈於玻璃基板2號區之突觸為興奮性前突觸………….……...58 圖十二、Neuroligin1是經由局部作用影響軸突的生長……………….....59 圖十三、利用基板裝置觀察多種蛋白分子對軸突生長的影響作用………60 圖十四、以傳統計算方法觀察多種蛋白分子對軸突的生長影響作用……61 圖十五、神經培養基板裝置之多樣性運用…………………………………62 陸、參考資料………………………………………………………………………63 附錄一…………………………………………………………………………69 附錄二…………………………………………………………………………70 附錄三…………………………………………………………………………71

    鄭佳和 (2009) 結合微接觸壓印與模版侷限收集分析海馬迴神精軸突與生長錐蛋白質。國立清華大學生命科學系碩士論文

    Alvarez J., Giuditta A. and Koenig E. (2000) Protein synthesis in axons and terminals: significance for maintenance, plasticity and regulation of phenotype. With a critique of slow transport theory. Prog Neurobiol 62:1-62

    Benowitz L. I. and Routtenberg A. (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 20:84-91.

    Biederer T., Sara Y., Mozhayeva M., Atasoy D., Liu X., Kavalali E. T. and S□dhof T. C. (2002) SynCAM, a synaptic adhesion molecule drives synapse assembly. Science 297:1525-1531.

    Brewer G. J., Torricelli J. R., Evege E. K. and Price P. J. (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35:567-76.

    Campenot R. B. (1977) Local control of neurite development by nerve growth factor. Proc. Natl. Acad. Sci. U.S.A. 74:4516-9.

    Campbell D. S. and Holt C. E. (2001) Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32:1013–1026.

    Campbell D. S. and Holt C. E. (2003) Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron 37:939–952.

    Cheng H. H., Liu S. H., Lee H. C., Lin Y. S., Huang Z. H., Hsu C. I., Chen Y. C. and Chang Y. C. (2006) Heavy chain of cytoplasmic dynein is a major component of the postsynaptic density fraction. J. Neurosci. Res. 84: 244-45.

    Cheng H. H., Huang Z. H., Lin W. H., Chow W. Y. and Chang Y. C. (2009) Cold-induced exodus of postsynaptic proteins from dendritic spines. J. Neurosci. Res. 87:460-69.

    Chubykin A. A., Atasoy D., Etherton M. R., Brose N., Kavalali E. T., Gibson J. R. and S□dhof T. C. (2007) Activity-Dependent Validation of Excitatory versus Inhibitory Synapses by Neuroligin-1 versus Neuroligin-2. Neuron. 54(6):919-931.

    Cox L. J., Hengst U., Gurksaya N. G., Lukyanov K. A. and Jaffrey S. R. (2008) Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nat. Cell Biol. 10:149-59.

    Craig A. M., Graf E. R. and Linhoff M. W. (2006) How to build a central synapse: clues from cell culture. Trends Neurosci. 29:8-20.

    Csucs G., Michel R., Lussi J. W., Textor M. and Danuser G. (2003) Microcontact printing of novel co-polymers in combination with proteins for cell-biological applications. Biomaterials 24(10):1713-20.

    Dean C., Scholl F. G., Choih J., DeMaria S., Berger J., Isacoff E. and Scheiffele P. (2003) Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci. 6(7):708-16.

    Dotti C. G., Sullivan C. A. and Banker G. A. (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci. 8(4):1454-68.

    Fuchs E. and Weber K. (1994) Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. 1994;63:345–382.

    Goedert M., Crowther R. A. and Garner C. C. (1991) Molecular characterization of microtubule-associated proteins tau and MAP2. Trends Neurosci. 14:193-9.

    Goedert M., Spillantini M. G., Jakes R., Rutherford D. and Crowther R. A. (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519-526.

    Gordon P. R.-Weeks, in Neuronal Growth Cones, in Developmental and Cell Biology Series, eds. J.B.L. Bard, P.W. Barlow and D.L. Kirk, Cambridge University Press, 2000, ch. 1, pp. 1-27.

    Guti□rrez R. C., Flynn R., Hung J., Kertesz A. C., Sullivan A., Zamponi G. W., El-Husseini A. and Colicos M. A. (2009) Activity-driven mobilization of post-synaptic protein. Eur J Neurosci. 30:2042-52.

    Hanes J., Zilka N., Bartkova M., Caletkova M., Dobrota D. and Novak M. (2009) Rat tau proteome consists of six tau isoforms: implication for animal models of human tauopathies. J. Neurochem. 108:1167-76.

    Hengst U., Deglincerti A., Kim H. J., Jeon N. L. and Jaffrey S. R. (2009) Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein. Nat Cell Biol. 11(8):1024-30.

    Heukeshoven J. and Dernick R. (1985) Simplified method for silver staining of proteins in polyacrylamid gels and the mechanism of silver staining. Electrophoresis. 6: 103-112.

    Himmler A., Drechsel D., Kirschner M. W. and Martin D. W. (1989) Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol. Cell Biol. 9:1381-1388.

    Ichikawa N., Iwabuchi K., Kurihara H., Ishii K., Kobayashi T., Sasaki T., Hattori N., Mizuno Y., Hozumi K., Yamada Y. and Arikawa-Hirasawa E. (2009) Binding of laminin-1 to monosialoganglioside GM1 in lipid rafts is crucial for neurite outgrowth. J Cell Sci. 122(2):289-99.

    Iida J, Hirabayashi S, Sato Y, Hata Y. (2004) Synaptic scaffolding molecule is involved in the synaptic clustering of neuroligin. Mol Cell Neurosci. 27(4):497-508.

    Kaplan B. B., Lavina Z. S. and Gioio A. E. (2004) Subcellular compartmentation of neuronal protein synthesis: new insights into the biology of the neuron. Ann. N.Y. Acad. Sci. 1018:244-54.

    Kennedy M. B., Bennett M. R. and Erondu N. E. (1983) Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a subunit of a calmodulin-dependent protein kinase. Proc. Natl. Acad. Sci. U.S.A. 80: 7357-7361.

    Khosravani H., Altier C., Zamponi G. W. and Colicos M. A. (2005) The Arg473Cys -neuroligin-1 mutation modulates NMDA mediated synaptic transmission and receptor distribution in hippocampal neurons. FEBS Lett. 579(29):6587-94.

    Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-85.

    Lee M. K., Tuttle J. B., Rebhun L. I., Cleveland D. W. and Frankfurter A. (1990) The expression and posttranslational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis. Cell Motil Cytoskeleton. Cell Motil. Cytoskel. 17:118-32.

    Lein P. J. and Higgins D. (1989) Laminin and a basement membrane extract have different effects on axonal and dendritic outgrowth from embryonic rat sympathetic neurons in vitro. Dev Biol. 136(2):330-45.

    Iida J., Hirabayashi S., Sato Y. and Hata Y. (2004) Synaptic scaffolding molecule is involved in the synaptic clustering of neuroligin. Mol Cell Neurosci. 27(4):497-508.

    Li N., Tourovskaia A. and Folch A. (2003) Biology on a chip: microfabrication for studying the behavior of cultured cells. Crit. Rev. Biomed. Eng. 31:423-88.

    Liu S. H., Cheng H. H., Huang S. Y., Yiu P. C. and Chang Y. C. (2006) Studying the protein organization of the postsynaptic density by a novel solid phase- and chemical cross-linking-based technology. Mol. Cel. Proteomics. 5:1019-32.

    McAllister A. K. (2007) Dynamic Aspects of CNS Synapse Formation. Ann. Rev. Neurosci. 30:425-450.

    Ming G. L., Wong S. T., Henley J. , Yuan X. U., Song H. J. , Nicholas C. S. and Poo M. M. (2002) Adaptation in the chemotactic guidance of nerve growth cones. Nature 417:411-418.

    Moccia R., Chen D., Lyles V., Kapuva E. E. Y., Kalachikov S., Spahn C. M. T., Frank J., Kandel R. R., Barad M. and Martin K. C. (2003) An unbiased cDNA library prepared from isolated Aplysia sensory neuron processes is enriched for cytoskeletal and translational mRNAs. J. Neurosci. 23:9409-17.

    Nam C. I. and Chen L. (2005) Postsynaptic assembly induced by neurexin- neuroligin interaction and neurotransmitter. Proc Natl Acad Sci U S A. 102(17):6137-42.

    Piper M. and Holt C. (2004) RNA translation in axons. Ann. Rev. Cell Dev. Biol. 20:505-23.

    Rogers J. A. and Nuzzo R. G. (2005) Recent progress in soft lithography. Materials Today 8:50-56.

    Scheiffele P., Fan J., Choih J., Fetter R. and Serafini T. (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell. 101(6):657-69.

    Schmitz Y., Luccarelli J., Kim M., Wang M. and Sulzer D. (2009) Glutamate controls growth rate and branching of dopaminergic axons. J Neurosci. 29(38):11973-81.

    Sonderegger P., Fishman M. C., Borkoum M., Bauer H. C., Neale E. A. and Nelson P. C. (1984) A few axonal proteins distinguish ventral spinal cord neurons from dorsal root ganglion neurons. J. Cell Biol. 98:364-8.

    Song A. H., Wang D., Chen G., Luo Y. Li, J., Duan S. and Poo M. M. (2009) A selective filter for cytoplasmic transport at the axon initial segment. Cell 136: 1148-1160.

    Taylor A. M., Blurton-Jones M., Rhee S. W., Cribbs D. H., Cotman C. W. and Jeon N. L. (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat. Methods. 2:599-605.

    Taylor A. M., Berchtold N. C., Perreau V. M., Tu C. H., Jeon N. L. and Cotman C. W. (2009) Axonal mRNA in uninjured and regenerating cortical mammalian axons. J. Neurosci. 29:4697-707.

    Ulfig N., Nickel J. and Bohl J. (1998) Monoclonal antibodies SMI 311 and SMI 312 as tools to investigate the maturation of nerve cells and axonal patterns in human fetal brain. Cell Tissue Res. 291:433-443.

    Vargas M. E. and Barres B. A. (2007) Why is Wallerian degeneration in the CNS so slow. Ann. Rev. Neurosci. 30:153-179.

    Willis D., Li K. W., Zheng J. Q., Chang J. H., Smit A., Kelly T., Merianda J. T., Sylvester J., Minnen J. V. and Twiss J. L. (2005) Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J. Neurosci. 25:778-91.

    Willis D. E., van Niekerk E. A., Sasaki Y., Mesngon M., Merianda T. T., Williams G. G., Kendall M., Smith D. S., Bassell G. J. and Twiss J. L. (2007) Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. J. Cell Biol. 178:965-80.

    Xia Y. and Whitesides G. M. (1998) Soft Lithography. Angew. Chem. Int. Ed., 37: 550-75.

    Yao J., Sasaki Y., Wen Z., Bassell G. J. and Zheng J. Q. (2006) An essential role for β-actin mRNA localization and translation in Ca2+-dependent growth cone guidance. Nat. Neurosci. 9:1265-73.

    Zhang H. L., Singe R. H. and Bassell G. J. (1999) Neurotrophin Regulation of β-Actin mRNA and Protein Localization within Growth Cones. J. Cell Biol.147:59-70.

    Zheng J. Q., Yao J., Sasaki Y., Wang Y. and Bassell G. J. (2006) An essential role for β-actin mRNA localization and translation in Ca2+-dependent growth cone guidance. Nat. Neurosci. 9:1265-1273.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE