研究生: |
劉昆妮 Liu, Kun-Ni |
---|---|
論文名稱: |
次毫米尺度高密度氮氣氣靶之流體分析與其應用於雷射尾流場電子加速之特性研究 Fluid Analysis for Sub-Millimeter Dense Nitrogen Gas Targets Applicable to Laser Wakefield Acceleration |
指導教授: |
林明緯
Lin, Ming-Wei |
口試委員: |
陳仕宏
Chen, Shih-Hung 周紹暐 Chou, Shao-Wei |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 雷射尾流場電子加速 、電漿粒子體模擬 、計算流體力學模擬 |
外文關鍵詞: | Laser wakefield acceleration, Particle-in-cell simulation, Computational fluid dynamic simulation |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雷射尾流場電子加速(laser wakefield acceleration, LWFA)可藉由聚焦具數兆瓦(terra watt, TW)尖峰功率之雷射脈衝至高密度薄氣體靶材達成。當雷射脈衝於密度高於1019 cm-3的電漿中傳播下,其強度即可因自聚焦(self-focusing)與自調變(self-modulation)等非線性效應而大幅增加而有效激發電漿波並加速電子至10 MeV等級之能量。除持續提升兆瓦級、高重複頻率雷射之技術,發展具適當空間分布、密度與成分之氣體靶材也有助於提升LWFA所產出電子數之特性,並得以應用於新型電子治療中或用以產生X光進行射線照相。因此本研究之重點即參考使用1 TW、40 fs的雷射脈衝進入次毫米長的高密度氮氣氣靶所產生之LWFA實驗結果,透過計算流體力學(computational fluid dynamic, CFD)模擬取得氣靶中氮原子的空間分佈,並將CFD模擬所得之氮原子密度分佈帶入電漿粒子體模擬(particle-in-cell simulation, PIC)以分析LWFA中雷射與電漿交互作用的物理機制以及所加速出的電子束特性。
本研究建立450 μm長之氣腔的三維CFD模擬, 通入20 psi與25 psi之氮氣背壓,可分別得到具尖峰原子密度為7.6\times1018cm-3與9.5\times1018cm-3之分布,並透過PIC模擬可驗證在使用25 psi背壓時可相比於使用20 psi背壓下增加約1.5倍的電子束電荷,然而雷射脈衝在氣體密度較高時會因感受到較強的游離誘導折射(ionization-induced refraction)而具有一定程度散焦現象,進而導致電子束往橫向發散程度較高。本研究另於CFD模擬中對孔徑為178 μm的噴嘴建立二維軸對稱流體模型,並用以研究在馬赫數(Mach number)M\approx2.4之超音速噴流暫態模擬中,為滿足Courant-Friedrichs-Lewy條件(Courant-Friedrichs-Lewy condition, CFL condition)C_r\le1所需要的網格大小與時間步驟(time step),以及精進網格劃分與求解器設定使模擬數值收斂性提升。研究另建立二維x-y平面模型並於178 μm噴嘴上方引入刀片以調變氣體噴流密度分佈,在通入400 psi之氮氣背壓的條件下,以平面模型討論不同刀片對噴嘴的遮蓋率以及刀片幾何形狀對產生之氣體噴流密度下降梯度所造成的影響。由模擬結果可知改變刀片遮蓋率可調變密度下降坡長度L與密度下降梯度\frac{
artial n}{
artial x}。而模擬也顯示氣靶前端會因氣體經由刀片與噴嘴側的反彈而出現額外的次密度尖峰,此時改變刀片幾何形狀即有助於避免氣體反彈而造成的影響,使噴流分佈呈現單一密度尖峰並具有可調變的密度下降緩坡區間。
Laser wakefield acceleration (LWFA) can be achieved by focusing a few-terawatt (TW) laser pulse into a thin gas target. When propagating in a plasma with an electron density >1019 cm-3,
the pump pulse experiences nonlinear effects such as the self-focusing and the self-modulation that can result in a greatly increased laser intensity to excite plasma waves and generate 10-MeV-scale electrons from LWFA. In addition to inventing high-average-power, high-repetition-rate, TW-level lasers, developing gas target with a modified density profile, an increased density, or an appropriate gas component also opens up opportunities to enhance further the properties of output electron beams from LWFA and facilitate their downstream application in electron therapy and X-ray radiography. Therefore, based on the experimental results acquired by introducing 1-TW, 40-fs pulses into a sub-mm, dense nitrogen gas target, this work focuses on developing computational fluid dynamics (CFD) simulations to investigate the density distributions of nitrogen atoms in the target, which can be subsequently applied into particle-in-cell (PIC) simulations for resolving the process of LWFA and the characteristics of the accelerated electrons.
Three-dimensional CFD model was first developed to study the distribution of nitrogen atom density inside a 450-μm-long gas cell, which showed that the peak atom density reached 7.6\times1018cm-3 and 9.5\times1018cm-3, respectively, when backing pressures of 20 and 25 psi were applied. The associated PIC simulations then indicated that the 25% increase in nitrogen atom density inside the cell could lead to a 1.5-fold increase of charge for the output electron beam but with a trade-off in a beam divergence.
This study also developed two-dimensional CFD model in axisymmetric geometry for simulating gas jets produced from a 178-μm-diameter. This model was applied for optimizing the mesh size and the time step set in the simulation to satisfy the Courant-Friedrichs-Lewy (CFL) condition C_r<1 under the supersonic flow regime with a Mach number M\approx2.4, along with the modifications for the mesh refinement and the solver to substantially improve the convergence of the numerical results.
With a two-dimensional planar geometry (in x and y coordinates), the CFD simulations were extended to study gas jets with a modulated density profile achieved by placing a blade above a nozzle; whereby length L of the density down-ramp region of the gas jet and the density gradient \frac{
artial n}{
artial x} across this region can be varied by tuning the blade coverage with respect to the nozzle. The results also showed that the multiple reflections of gas flows between the blade and the nozzle lip could result in the appearance of an extra density peak located prior to the main peak of the gas jet, which can be avoided by changing the geometry of the blade.
[1] T. Tajima and J. M. Dawson, “Laser Electron Accelerator,” Phys. Rev. Lett. 43, 267 (1976).
[2] A. Buck, J. Wenz, J. Xu, K. Khrennikov, K. Schmid, M. Heigoldt, J. M. Mikhailova, M. Geissler, B. Shen, F. Krausz, S. Karsch, and L. Veisz, “Shock-Front Injector for High-Quality Laser-Plasma Acceleration,” Phys. Rev. Lett. 110, 185006 (2013).
[3] M.-W. Lin, C.-Y. Hsieh, D. K. Tran, and S.-H. Chen, “Simulation study of ionization-induced injection in sub-terawatt laser wakefield acceleration,” Phys. Plasmas 27, 013102 (2020).
[4] S. Kneip, C. McGuffey, J. Martins et al., “Bright spatially coherent synchrotron X-rays from a table-top source,” Nature Phys 6, 980–983 (2010).
[5] K. K. Kainz, K. R. Hogstrom, J. A. Antolak, P. R. Almond, C. D. Bloch, C. Chiu, M. Fomytskyi, F. Raischel, M. Downer, T. Tajima, “Dose properties of a laser accelerated electron beam and prospects for clinical application,” Med. Phys. 31, 2053-67 (2004).
[6] F. L. Pedrotti, S.J., L. M. Pedrotti, L. S. Pedrotti, Introduction To Optics , Third edition (2018).
[7] B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (1991).
[8] W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca, and L. O. Silva, “Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime,” Phys. Rev. ST Accel. Beams 10, 061301 (2007).
[9] S.-Y. Chen, M. Krishnan, A. Maksimchuk, R. Wagner, and D. Umstadter, “Detailed dynamics of electron beams self-trapped and accelerated in a self-modulated laser wakefield,” Phys. Plasmas 6, 4739 (1999).
[10] G.‐Z. Sun, E. Ott, Y. C. Lee, and P. Guzdar, “Self‐focusing of short intense pulses in plasmas,” Phys. Fluids 30, 526 (1987).
[11] R. W. Boyd, Nonlinear Optics, Third Edition (2008).
[12] F. Albert, N. Lemos, J. L. Shaw, P. M. King, B. B. Pollock, C. Goyon, W. Schumaker, A. M. Saunders, K. A. Marsh, A. Pak, J. E. Ralph, J. L. Martins, L. D. Amorim, R. W. Falcone, S. H. Glenzer, J. D. Moody, and C. Joshi, “Betatron x-ray radiation from laser-plasma accelerators driven by femtosecond and picosecond laser systems,” Phys. Plasmas 25, 056706 (2018).
[13] H. Ekerfelt, M. Hansson, I. G. González, X. Davoine, and O. Lundh, “A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration,” Sci Rep 7, 12229 (2017).
[14] M. Chen, E. Esarey, C. B. Schroeder, C. G. R. Geddes, and W. P. Leemans, “Theory of ionization-induced trapping in laser-plasma accelerators,” Phys. Plasmas 19, 033101 (2012).
[15] A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, and C. Joshi, “Injection and Trapping of Tunnel-Ionized Electrons into Laser-Produced Wakes,” Phys. Rev. Lett. 104, 025003 (2010).
[16] C.-Y. Hsieh, M.-W. Lin, and S.-H. Chen, “Effect of driving pulse properties on the performance of sub-terawatt laser wakefield acceleration,” AIP Advances 8, 105009 (2018).
[17] M.-W. Lin, T.-Y. Chu, Y.-Z. Chen, D. K. Tran, H.-H. Chu, S.-H. Chen, and J. Wang, “Laser wakefield acceleration driven by a few-terawatt laser pulse in a sub-mm nitrogen gas jet,” Phys. Plasmas 27, 113102 (2020).
[18] D. Gustas, D. Gu´enot, A. Vernier, S. Dutt, F. Böhle, R. Lopez-Martens, A. Lifschitz, and J. Faure, “High-charge relativistic electron bunches from a kHz laser-plasma accelerator,” Phys. Rev. Accel. Beams 21, 013401 (2018).
[19] M. Tzoufras, W. Lu, F. S. Tsung, C. Huang, W. B. Mori, T. Katsouleas, J. Vieira, R. A. Fonseca, and L. O. Silva, “Beam loading by electrons in nonlinear plasma wakes,” Phys. Plasmas 16, 056705 (2009).
[20] A. Döpp, E. Guillaume, C. Thaury, J. Gautier, K. Ta Phuoc, and V. Malka, “3D printing of gas jet nozzles for laserplasma accelerators,” Rev. Sci. Instrum. 87, 073505 (2016).
[21] J. Osterhoff, A. Popp, Zs. Major, B. Marx, T. P. Rowlands-Rees, M. Fuchs, M. Geissler, R. Hörlein, B. Hidding, S. Becker, E. A. Peralta, U. Schramm, F. Grüner, D. Habs, F. Krausz, S. M. Hooker, and S. Karsch, “Generation of Stable, Low-Divergence Electron Beams by Laser-Wakefield Acceleration in a Steady-State-Flow Gas Cell,” Phys. Rev. Lett. 101, 085002 (2008).
[22] K. Schmid, A. Buck, C. M. S. Sears, J. M. Mikhailova, R. Tautz, D. Herrmann, M. Geissler, F. Krausz, and L. Veisz, “Density-transition based electron injector for laser driven wakefield accelerators,” Phys. Rev. ST Accel. Beams 13, 091301 (2010).
[23] M. Vargas, W. Schumaker, Z.-H. He, Z. Zhao, K. Behm, V. Chvykov, B. Hou, K. Krushelnick, A. Maksimchuk, V. Yanovsky, and A. G. R. Thomas, “Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets,” Appl. Phys. Lett. 104, 174103 (2014).
[24] M. Hansson, T. L. Audet, H. Ekerfelt, B. Aurand, I. Gallardo González, F. G. Desforges, X. Davoine, A. Maitrallain, S. Reymond, P. Monot, A. Persson, S. Dobosz Dufrénoy, C-G Wahlström, B. Cros, and O. Lundh, “Localization of ionization-induced trapping in a laser wakefield accelerator using a density down-ramp,” Plasma Phys. Control. Fusion 58, 055009 (2016).
[25] M. Kirchen, S. Jalas, P. Messner, P. Winkler, T. Eichner, L. Hübner, T. Hülsenbusch, L. Jeppe, T. Parikh, M. Schnepp, and A. R. Maier, “Optimal Beam Loading in a Laser-Plasma Accelerator,” Phys. Rev. Lett. 126, 174801 (2021).
[26] D. J. Spence, A. Butler, and S. M. Hooker, “Gas-filled capillary discharge waveguides,” J. Opt. Soc. Am. B 20, 138-151 (2003).
[27] D. Adair, Z, Bakenov, M. Jaeger, “Building on a traditional chemical engineering curriculum using computational fluid dynamics,” Educ. Chem. Eng. 9, Issue 4 (2014).
[28] Tech-X Corporation, VORPAL User Guide, VORPAL 4.2.
[29] ANSYS Fluent Theory Guide release 15.0, ANSYS Inc., (2013).
[30] ANSYS Fluent 16.0 超級學習手冊, 唐家鵬, 人民電郵出版社 (2016).
[31] O. Zhou, H.-E. Tsai, T. M. Ostermayr, L. F.-Chiang, J. van Tilborg, C. B. Schroeder, E. Esarey, and C. G. R. Geddes, “Effect of nozzle curvature on supersonic gas jets used in laser–plasma acceleration,” Phys. Plasmas 28, 093107 (2021).
[32] L. Fan-Chiang, H.-S. Mao,1 H.-E. Tsai, T. Ostermayr, K. K. Swanson, S. K. Barber, S. Steinke, J. van Tilborg,1 C. G. R. Geddes, and W. P. Leemans, “Gas density structure of supersonic flows impinged on by thin blades for laser–plasma accelerator targets,” Phys. Fluids 32, 066108 (2020).