研究生: |
溫開平 Wen, Kai-Ping |
---|---|
論文名稱: |
石墨烯對紐西蘭大白兔皮膚與眼睛刺激性及對小鼠毒性之探討 Effects of graphene on skin and eye irritation of New Zealand white rabbits and toxicity of mice |
指導教授: |
戴念華
Tai, Nyan-Hwa |
口試委員: |
李紫原
Lee, Chi-Young 張晃猷 Chang, Hwan-You 陳盈潔 Chen, Ying-Chieh |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 石墨烯 、刺激性 、體內 、毒性 |
外文關鍵詞: | graphene, irritation, in vivo, toxicity |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是利用電解剝離法製備石墨烯,使石墨烯表面接有聚苯乙烯磺酸鈉,減少石墨烯之間的凡得瓦爾力作用,以提升其在水中的分散性。此方法所使用的聚苯乙烯磺酸鈉毒性低,可增加生物相容性,適合應用在生物領域。相較於其他製程,電解剝離法可以低溫、低成本、高產率的方式快速製備石墨烯。
為了評估石墨烯的刺激性與在體內的毒性,以瞭解石墨烯作為體內功能性材料的可能性。本實驗分為兩部分,第一部分於兔子皮膚上塗抹石墨烯,在經過24小時接觸後,連續追蹤達三天都未發現皮膚出現紅斑或浮腫。眼睛滴入石墨烯溶液後在後續的72小時內皆沒有發現結膜的充血刺激,角膜染色的結果也未出現潰瘍。這些結果顯示石墨烯並不會對皮膚及眼睛等黏膜產生刺激性。第二部分是在小鼠尾靜脈注射不同濃度的石墨烯,發現在注射後第一天高濃度組別的小鼠,血清肝功能出現異常,且在第七天以後回到正常範圍。組織切片的結果顯示,注射高濃度石墨烯的小鼠可在肺、肝、脾等器官中發現石墨烯的團簇,並且累積達90天都無法排除體外。體內即時追蹤的結果則顯試,帶有螢光的石墨烯在短時間就分布到全身,並且在24小時有部分經由尿液排泄,另一部分逐漸累積到肝臟。
In order to acquire well dispersed graphene solution, we chose electrochemical exfoliation method to synthesize graphene. In this method, poly sodium 4-styrenesulfonate was bound on graphene during the process, therefore improve the hydrophilicity of graphene and prevent it from re-stacking by strong Van der Waals interaction. This method offers advantages such as low process temperature, low cost, and rapid and efficient graphene fabrication. Also, the polymer is biocompatible and thus suitable for biomedical application.
To evaluate possible applications of graphene in vivo, this study conducted irritation and toxicity tests of graphene synthesized by the exfoliation method. First, skin irritation test on rabbits reveals that graphene did not cause any skin irritation and corrosion even in a long exposure time up to 24 h. Eye irritation test indicates that graphene could neither cause eye irritation nor induce corneal ulcer.
On the other hand, mouse after tail vein injection of graphene at a high concentration showed acute abnormality of liver function on day 1, although the liver function result dropped to normal range on day 7. Histopathology analysis of tissue section uncovered that after injection of high dose graphene, there were obvious accumulates of graphene found in lung, liver, and spleen, and could be retained by these organs till 90 days post injection. In order to trace the distribution of graphene in mice after intravenous injection, in vivo and in situ image system was applied to acquire fluorescence images at different time points post injection. It shows that graphene is widely distributed in the entire mouse within one minute, and tends to retain in liver and bladder after one day.
[1] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, “C60: buckminsterfullerene”, Nature, Vol. 318, pp. 162-163, 1985.
[2] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, Vol. 354, pp. 56-58, 1991.
[3] Z. Yan and A. R. Barron, “Characterization of graphene by Raman spectroscopy”, Connexions Modules, Version 1.2, 2010.
[4] A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nature Materials, Vol. 6, pp. 183-191, 2007.
[5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science, Vol. 306, pp. 666-669, 2004.
[6] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science, Vol. 321, pp. 385-388, 2008.
[7] I. W. Frank, D. M. Tanenbaum, A. M. van der Zande, and P. L. McEuen, “Mechanical properties of suspended graphene sheets”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 25, pp. 2558-2561, 2008.
[8] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene”, Nano Letters, Vol. 8, pp. 902-907, 2008.
[9] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2”, Nature Nanotechnology, Vol. 3, pp. 206-209, 2008.
[10] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene”, Science, Vol. 320, No. 5881, p. 1308, 2008.
[11] B. Partoens and F. M. Peeters, “From graphene to graphite: electronic structure around the K point”, Physical Review B, Vol. 74, pp. 075404 (11), 2006.
[12] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, “Graphene based materials: past, present and future”, Progress in Materials Science, Vol. 56, pp. 1178-1271, 2011.
[13] S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes”, Nature Nanotechnology, Vol. 4, pp. 217-224, 2009.
[14] J. Vaari, J. Lahtinen, and P. Hautojärvi, “The adsorption and decomposition of acetylene on clean and K-covered Co (0001)”, Catalysis Letters, Vol. 44, pp. 43-49, 1997.
[15] K. Yamamoto, M. Fukushima, T. Osaka, and C. Oshima, “Charge-transfer mechanism for the (monolayer graphite) /Ni (111) system”, Physical Review B, Vol. 45, pp. 11358-11361, 1992.
[16] J. Coraux, A. T. N'Diaye, C. Busse, and T. Michely, “Structural coherency of graphene on Ir (111)”, Nano Letters, Vol. 8, pp. 565-570, 2008.
[17] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science, Vol. 324, pp. 1312-1314, 2009.
[18] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, “Chemical vapor deposition of thin graphite films of nanometer thickness”, Carbon, Vol. 45, pp. 2017-2021, 2007.
[19] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators”, Applied Physics Letters, Vol. 93, pp. 11310-11313, 2008.
[20] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature, Vol. 457, pp. 706-710, 2009.
[21] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene”, Science, Vol. 312, pp. 1191-1196, 2006.
[22] J. Hass, W. A. d. Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene”, Journal of Physics: Condensed Matter, Vol. 20, pp. 323202-3232029, 2008.
[23] B. C. Brodie, “On the atomic weight of graphite”, Philosophical Transactions of the Royal Society of London, Vol. 149, pp. 249-259, 1859.
[24] W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide”, Journal of the American Chemical Society, Vol. 80, pp. 1339-1339, 1958.
[25] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets”, Nature Nanotechnology, Vol. 3, pp. 101-105, 2008.
[26] H. He, J. Klinowski, M. Forster, and A. Lerf, “A new structural model for graphite oxide”, Chemical Physics Letters, Vol. 287, pp. 53-56, 1998.
[27] J. Ito, J. Nakamura, and A. Natori, “Semiconducting nature of the oxygen-adsorbed graphene sheet”, Journal of Applied Physics, Vol. 103, pp. 113712 (5), 2008.
[28] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir-Blodgett films”, Nature Nanotechnology, Vol. 3, pp. 538-542, 2008.
[29] P. Zhu, M. Shen, S. Xiao, and D. Zhang, “Experimental study on the reducibility of graphene oxide by hydrazine hydrate”, Physica B: Condensed Matter, Vol. 406, pp. 498-502, 2011.
[30] K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications”, Nature Chemistry, Vol. 2, pp. 1015-1024, 2010.
[31] G. Wang, B. Wang, J. Park, Y. Wang, B. Sun, and J. Yao, “Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation”, Carbon, Vol. 47, pp. 3242-3246, 2009.
[32] C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li, “High-quality thin graphene films from fast electrochemical exfoliation”, ACS Nano, Vol. 5, pp. 2332-2339, 2011.
[33] S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, and C. Fan, “A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis”, Advanced Functional Materials, Vol. 20, pp. 453-459, 2010.
[34] Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs”, Journal of the American Chemical Society, Vol. 130, pp. 10876-10877, 2008.
[35] L. Zhang, Z. Lu, Q. Zhao, J. Huang, H. Shen, and Z. Zhang, “Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide”, Small, Vol. 7, pp. 460-464, 2011.
[36] K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, and Z. Liu, “The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power”, Biomaterials, Vol. 33, pp. 2206-2214, 2012.
[37] K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, and Z. Liu, “Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles”, Advanced Materials, Vol. 24, pp. 1868-1872, 2012.
[38] A. Shvedova, V. Castranova, E. Kisin, D. S. Berry, A. Murray, V. Gandelsman, A. Maynard, and P. Baron, “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells”, Journal of Toxicology and Environmental Health, Part A: Current Issues, Vol. 66, pp. 1909-1926, 2003.
[39] Y. Li, Y. Liu, Y. Fu, T. Wei, L. L. Guyader, G. Gao, R. S. Liu, Y. Z. Chang and C. Chen, “The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways”, Biomaterials, Vol. 33, pp. 402-411, 2012.
[40] Y. Chang, S. T. Yang, J. H. Liu, E. Dong, Y. Wang, A. Cao, Y. Liu, and H. Wang, “In vitro toxicity evaluation of graphene oxide on A549 cells”, Toxicology Letters, Vol. 200, pp. 201-210, 2011.
[41] K. Wang, J. Ruan, H. Song, J. Zhang, Y. Wo, S. Guo, and D. Cui, “Biocompatibility of graphene oxide”, Nanoscale Research Letters, Vol. 6, No. 1 (8), 2011.
[42] A. Schinwald, F. A. Murphy, A. Jones, W. MacNee, and K. Donaldson, “Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties”, ACS Nano, Vol.6, pp. 736-746, 2012.
[43] L. Yan, Y. Wang, X. Xu, C. Zeng, J. Hou, M. Lin, J. Xu, F. Sun, X. Huang, L. Dai, F. Lu, and Y. Liu, “Can graphene oxide cause damage to eyesight? ”, Chemical Research in Toxicology, Vol. 25, pp. 1265-1270, 2012.
[44] F. L. Filon, M. Crosera, G. Adami, M. Bovenzi, F. Rossi, and G. Maina, “Human skin penetration of gold nanoparticles through intact and damaged skin”, Nanotoxicology, Vol. 5, No. 4, pp. 493-501, 2011.
[45] F. F. Laresea, F. D. Agostina, M. Croserab, G. Adamib, N. Renzic, M. Bovenzia, and G. Mainad, “Human skin penetration of silver nanoparticles through intact and damaged skin” Toxicology, Vol. 255, pp. 33-37, 2009.
[46] S. E. Cross, B. Innes, M. S. Roberts, T. Tsuzuki, T. A. Robertson, and P. McCormick, “Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation”, Skin Pharmacology and Physiology, Vol. 20, pp. 148-154, 2007.
[47] Z. Grabareka and J. Gergelya, “Zero-length crosslinking procedure with the use of active esters”, Analytical Biochemistry, Vol. 185, pp. 131-135, 1990.
[48] J. V. Staros, R. W. Wright, and D. M. Swingle, “Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions.”, Analytical Biochemistry, Vol. 156, pp. 220-222, 1986.
[49] R. Timkovich, “Detection of the stable addition of carbodiimide to proteins.”, Analytical Biochemistry, Vol. 79, pp. 135-143, 1977.
[50] NHS ester labeling of amino biomolecules, http://www.lumiprobe.com/protocols/nhs-ester-labeling
[51] British standards institution biological evaluation of medical devices. part 10: tests for irritation and skin sensitization ISO 10993-10:2010.
[52] Acute dermal irritation/corrosion, OECD guideline for the testing of chemicals. #404, 2002.
[53] Acute Eye irritation/corrosion, OECD guideline for the testing of chemicals. #405, 2012.
[54] 蔡倉吾, “實驗動物管理與使用指南”, 中華實驗動物學會,台北, 2010.
[55] G.J. Krinke, “The laboratory rat”, Academic Press, London, p. 491, 2000.
[56] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers”, Physical Review Letters, Vol. 97, pp. 187401-187405, 2006.
[57] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects”, Solid State Communications, Vol. 143, pp. 47-57, 2007.
[58] P. Vareilles, P. Conquet, and J. C. L. Douarec, “A method for the routine intraocular pressure measurement in the rabbit: range of IOP variation in this species”, Experimental Eye Research, Vol. 24, pp. 369-375, 1977.
[59] J. W. McLaren, R. F. Brubaker, and J. S. FitzSimon, “Continuous measurement of intraocular pressure in rabbits by telemetry”, Investigative Ophthalmology & Visual Science, Vol. 37, No. 6, pp. 966-975, 1996.
[60] Reference ranges of hematology data of healthy female Balb/c mice were obtained from Charles River Laboratories: http://www.criver.com/EN-US/PRODSERV/BYTYPE/RESMODOVER/RESMOD/Pages/BALBcMouse.aspx.