研究生: |
李怡稹 Lee, Eh-Tzen |
---|---|
論文名稱: |
利用核磁共振技術研究CXCR3胞外區與趨化因子CXCL4/CXCL4L1間交互作用 NMR study of CXCR3 extracellular elements binding chemokine ligands, CXCL4 and CXCL4L1 |
指導教授: |
蘇士哲
Sue, Shih-Che |
口試委員: |
程家維
Cheng, Jya-Wei 吳昆峯 Wu, Kuen-Phon |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 趨化因子 、趨化受體 、核磁共振 |
外文關鍵詞: | Receptor |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
CXCL4是由人血小板分泌的CXC型趨化因子,它參與多種生理功能,包括凝血、細胞趨化性和抗血管生成。CXCL4L1是CXCL4的一個非等位變異體,與CXCL4的區別僅在於C端α螺旋中的三個胺基酸。此三個胺基酸的差異導致兩者C端α螺旋的方向不同,CXCL4L1的C端螺旋方向是向外伸展,使CXCL4L1傾向從四聚體解離為單體。根據先前研究顯示,CXCL4和CXCL4L1是透過單體的形式激活CXCR3並誘發生理功能。因此,我們建構了兩個單體突變體,CXCL4-E28K-V29P-K31P和CXCL4L1-E28K,讓趨化因子在中性條件下保持單體狀態。我們測試了突變體與的CXCR3不同膜外區域片段間的作用,包括N端延伸區和第二胞外環。NMR滴定實驗僅證明了N端硫酸化延伸區具有趨化因子配體結合的能力。其他片段包含N端延伸區及第二包外環則在NMR光譜上沒有明顯的滴定變化。我們進一步將N端片段和ECL2整合到支架蛋白中以評估結合的協同性,發現在滴定實驗中觀察到明顯的光譜訊號變化,推論CXCR3的N端與ECL2具有協同作用來辨識配體CXCL4單體。這項研究可以幫助我們了解CXCL4 / CXCL4L1和CXCR3之間的結合識別位和作用機制。
CXCL4 is a C-X-C-type chemokine, secreted from human platelet. It exhibits a wide range of functions such as hematopoiesis, chemotaxis, and anti-angiogenesis. CXCL4L1 is a nonallelic variant of CXCL4, which differs from CXCL4 in only three residues located in the C-terminal helix. The difference causes a distinct orientation of the C-terminal helix and makes CXCL4L1 more efficient in dissociating from a tetramer into monomers. CXCL4 and CXCL4L1 have been reported to perform their biological functions through activating C-X-C motif chemokine receptor 3 (CXCR3) and the activation is mainly through chemokine monomer formation. The higher tendency of forming monomer is correlated with the higher functional activity in CXCL4L1. In the study, we created two mutants of CXCL4L1-E28K and CXCL4-E28K-V29P-K31P to allow the two chemokines favorably staying in monomeric status. We tested the mutants in binding with different CXCR3 extracellular elements, including N-terminal extension and extra-cellular loop 2 (ECL2). Synthesized peptides were firstly tested to establish the binding preference. The NMR titration experiments only demonstrated sulfated N-terminal extension with chemokine ligand binding ability. The other peptides including the non-sulfated N-terminal extension sequence and ECL2 made no detectable change on NMR spectra. We further integrated the N-terminal extension and ECL2 on a scaffold protein to evaluate the binding cooperativity. The significant perturbation has been observed in the titration experiment. The N-terminal extension together with the ECL2 element synergistically interacts with CXCL4 monomer. The study can help us to understand the recognition selection between CXCL4/CXCL4L1 and CXCR3.
1. Balkwill, F., Cancer and the chemokine network. 2004. 4(7): p. 540.
2. Keeley, E.C., B. Mehrad, and R.M. Strieter, Chemokines as mediators of tumor angiogenesis and neovascularization. 2011. 317(5): p. 685-690.
3. Rajarathnam, K., et al., How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. 2018.
4. Raman, D., T. Sobolik-Delmaire, and A. Richmond, Chemokines in health and disease. 2011. 317(5): p. 575-589.
5. Salanga, C. and T. Handel, Chemokine oligomerization and interactions with receptors and glycosaminoglycans: the role of structural dynamics in function. 2011. 317(5): p. 590-601.
6. Abdallah, M., T. Michel, and L. Kohidai, Autism Spectrum Disorders and Circulating Chemokines. 2014: p. 1627-1642.
7. Sepuru, K.M. and K. Rajarathnam, CXCL1/MGSA is a novel glycosaminoglycan (GAG)-binding chemokine structural evidence for two distinct non-overlapping binding domains. 2016. 291(8): p. 4247-4255.
8. Wang, L., et al., Endothelial heparan sulfate deficiency impairs L-selectin-and chemokine-mediated neutrophil trafficking during inflammatory responses. 2005. 6(9): p. 902.
9. Balkwill, F.R., The chemokine system and cancer. 2012. 226(2): p. 148-157.
10. Loetscher, P. and I.J.J.o.l.b. Clark‐Lewis, Agonistic and antagonistic activities of chemokines. 2001. 69(6): p. 881-884.
11. Rajagopalan, L. and K. Rajarathnam, Ligand selectivity and affinity of chemokine receptor CXCR1 Role of N-terminal domain. 2004. 279(29): p. 30000-30008.
12. Elisseeva, E.L., et al., NMR studies of active N-terminal peptides of stromal cell-derived factor-1 structural basis for receptor binding. 2000. 275(35): p. 26799-26805.
13. Allen, S.J., S.E. Crown, and T.M. Handel, Chemokine: receptor structure, interactions, and antagonism. 2007. 25: p. 787-820.
14. Qin, L., et al., Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. 2015. 347(6226): p. 1117-1122.
15. Simpson, L.S., et al., Regulation of chemokine recognition by site-specific tyrosine sulfation of receptor peptides. 2009. 16(2): p. 153-161.
16. Ludeman, J.P. and M.J. Stone, The structural role of receptor tyrosine sulfation in chemokine recognition. 2014. 171(5): p. 1167-1179.
17. Kleist, A.B., et al., New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. 2016. 114: p. 53-68.
18. Ziarek, J.J., et al., Sulfopeptide probes of the CXCR4/CXCL12 interface reveal oligomer-specific contacts and chemokine allostery. 2013. 8(9): p. 1955-1963.
19. Deuel, T.F., et al., Amino acid sequence of human platelet factor 4. 1977. 74(6): p. 2256-2258.
20. Kowalska, M.A., L. Rauova, and M. Poncz, Role of the platelet chemokine platelet factor 4 (PF4) in hemostasis and thrombosis. 2010. 125(4): p. 292-296.
21. Aidoudi, S., A. Bikfalvi, Interaction of PF4 (CXCL4) with the vasculature: a role in atherosclerosis and angiogenesis. 2010. 104(11): p. 941-948.
22. Auerbach, D.J., et al., Identification of the platelet-derived chemokine CXCL4/PF-4 as a broad-spectrum HIV-1 inhibitor. 2012. 109(24): p. 9569-9574.
23. Zhang, X., et al., Crystal structure of recombinant human platelet factor 4. 1994. 33(27): p. 8361-8366.
24. Li, J., et al., The roles and potential therapeutic implications of CXCL4 and its variant CXCL4L1 in the pathogenesis of chronic liver allograft dysfunction. 2015. 26(1): p. 67-74.
25. Vandercappellen, J., et al., The role of the CXC chemokines platelet factor-4 (CXCL4/PF-4) and its variant (CXCL4L1/PF-4var) in inflammation, angiogenesis and cancer. 2011. 22(1): p. 1-18.
26. Vandercappellen, J., et al., The COOH-terminal peptide of platelet factor-4 variant (CXCL4L1/PF-4var47-70) strongly inhibits angiogenesis and suppresses B16 melanoma growth in vivo. 2010. 8(3): p. 322-334.
27. Kuo, J.H., et al., Alternative C-Terminal Helix Orientation Alters Chemokine Function STRUCTURE OF THE ANTI-ANGIOGENIC CHEMOKINE, CXCL4L1. 2013. 288(19): p. 13522-13533.
28. Chen, Y.P., et al., Oligomerization state of CXCL4 chemokines regulates G protein-coupled receptor activation. 2017. 12(11): p. 2767-2778.
29. Groom, J.R. and A.D. Luster, CXCR3 in T cell function. 2011. 317(5): p. 620-631.
30. Lacotte, S., et al., CXCR3, inflammation, and autoimmune diseases. 2009. 1173(1): p. 310-317.
31. Flier, J., et al., Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. 2001. 194(4): p. 398-405.
32. Berchiche, Y.A. and T.P. Sakmar, CXC chemokine receptor 3 alternative splice variants selectively activate different signaling pathways. 2016. 90(4): p. 483-495.
33. Booth, V., et al., The CXCR3 binding chemokine IP-10/CXCL10: structure and receptor interactions. 2002. 41(33): p. 10418-10425.
34. Mueller, A., et al., CXCL4‐induced migration of activated T lymphocytes is mediated by the chemokine receptor CXCR3. 2008. 83(4): p. 875-882.
35. Struyf, S., et al., Angiostatic and chemotactic activities of the CXC chemokine CXCL4L1 (platelet factor-4 variant) are mediated by CXCR3. 2011. 117(2): p. 480-488.
36. Lasagni, L., et al., An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. 2003. 197(11): p. 1537-1549.
37. Ziarek, J.J., et al., Structural basis for chemokine recognition by a G protein–coupled receptor and implications for receptor activation. 2017. 10(471): p. eaah5756.
38. Colvin, R.A., et al., CXCR3 requires tyrosine sulfation for ligand binding and a second extracellular loop arginine residue for ligand-induced chemotaxis. 2006. 26(15): p. 5838-5849.
39. Datta, A. and M.J. Stone, Soluble mimics of a chemokine receptor: chemokine binding by receptor elements juxtaposed on a soluble scaffold. 2003. 12(11): p. 2482-2491.
40. Blanco, F.J. and L. Serrano, Folding of protein G B1 domain studied by the conformational characterization of fragments comprising its secondary structure elements. 1995. 230(2): p. 634-649.
41. Cheng, Y., D.J. Patel, An efficient system for small protein expression and refolding. 2004. 317(2): p. 401-405.
42. Lin, C. W., Dynamic investigation of DTT-reduced CXCL4 in NMR. Master Thesis, National Tsing Hua University 2015.
43. Millard, C.J., et al., Structural basis of receptor sulfotyrosine recognition by a CC chemokine: the N-terminal region of CCR3 bound to CCL11/eotaxin-1. 2014. 22(11): p. 1571-1581.
44. Schnur, E., et al., NMR mapping of RANTES surfaces interacting with CCR 5 using linked extracellular domains. 2013. 280(9): p. 2068-2084.
45. Billottet, C., C. Quemener, and A. Bikfalvi, CXCR3, a double-edged sword in tumor progression and angiogenesis. 2013. 1836(2): p. 287-295.
46. Diepenhorst, N.A., et al., Investigation of interactions at the extracellular loops of the relaxin family peptide receptor 1 (RXFP1). 2014. 289(50): p. 34938-34952.
47. Barter, E.F. and M.J. Stone, Synergistic interactions between chemokine receptor elements in recognition of interleukin-8 by soluble receptor mimics. 2012. 51(6): p. 1322-1331.