研究生: |
陳信文 Chen, Hsin Wen |
---|---|
論文名稱: |
電漿子雙傳輸線的非線性效應及其模態之探討 Investigation of Nonlinear and Mode Characteristics in Plasmonic Two-Wire Transmission Line |
指導教授: |
黃承彬
Huang, Chen Bin |
口試委員: |
李明昌
Lee, Ming Chang 黃哲勳 Huang, Jer Shing |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 42 |
中文關鍵詞: | 雙傳輸線 、TE模態 、TM模態 、二倍頻 |
外文關鍵詞: | two-wire transmission line, TE mode, TM mode, second harmonic generation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用有限差分時域法探討在雙傳輸導線上藉由奈米電漿子來產生非線性效應(二倍頻)的現象,包括非線性訊號在波導裡面傳遞的模態種類、不同入射模態對於產生二倍頻效應的影響。
而在樣品的製作上,我們使用聚焦離子束的方法將結構刻在微小金片上,實驗觀測的部分,則是利用自行搭設的前半部共聚焦顯微鏡系統以及後半部光學成像系統來進行量測。入射光源為中心1560奈米且脈衝寬約為60飛秒的脈衝雷射,將雷射聚焦在雙傳輸導線的端點上並且利用NIRCCD來觀察基頻激發亮點的位置,接著利用EMCCD觀察二倍頻亮點的位置,同時也使用光譜儀量測二倍頻的光譜訊號,最後我們可以從實驗中觀察到儘管入射的基頻模態不同(橫向電波模態以及橫向磁波模態),但產生出來的二倍頻模態卻都是屬於橫向磁波模態(TM)。接著將實驗結果和模擬結果互相比較,確定為二倍頻訊號。
In this work, we used finite-difference time-domain (FDTD) numerical analysis to investigate the generation of nonlinear response (second harmonic generation, SHG) by surface plasmonics on the two-wire transmission line (TWTL), including the mode type of propagating nonlinear signals, the effect of different input fundamental mode type on the generation of SHG.
We used focused ion beam milling to fabricate the samples which deposited on the glass substrate, and in the experiment, we used our home-made confocal microscope and the other optical system. A pulse laser with center wavelength 1560 nm and about 60 fs pulse duration is focused on the spot at the end of TWTL and NIR CCD camera is used to observe the position of fundamental emission spot. As for SHG signal, we used EMCCD to observe it, and we also used the spectrometer to detect the spectrum of SHG signal. Finally, we found that despite the input fundamental mode is different, the mode type of generated SHG signals are both TM mode.
1. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine 4, 396-402 (1902).
2. U. Fano, "Some theoretical considerations on anomalous diffraction grating," Physical Review, 50(6), 573-573 (1936).
3. U. Fano, "On the anomalous diffraction gratings II," Physical Review, 51(4), 288-288 (1937).
4. U. Fano, "On the theory of the intensity anomalies of diffraction," Annalen Der Physik, 32(5), 393-443 (1938).
5. U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary
waves on metallic surfaces (Sommerfeld's waves)," Journal of the Optical Society of America, 31(3), 213-222 (1941).
6. A. Hessel and A. A. Oliner, "A new theory of Wood's anomalies on optical gratings," Applied Optics, 4(10), 1275-1297 (1965).
7. R. H. Ritchie, "Plasma losses by fast electrons in thin films," Physical Review, 106(5), 874-881 (1957).
8. E. A. Stern and R. A. Ferrell, "Surface plasma oscillatons of a degenerate electron gas," Physical Review, 120(1), 130-136 (1960).
9. H. A. Atwater, "The promise of plasmonics," Scientific American, 296(4), 56-63 (2007).
10. M. Moskovits, "Surface-enhanced spectroscopy," Reviews of Modern Physics, 57(3), 783-826 (1985).
11. M. Moskovits, "Surface-enhanced Raman spectroscopy: a brief retrospective," Journal of Raman Spectroscopy, 36(6), 485-496 (2005).
12. S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Applied Physics Letters, 81(9), 1714-1716 (2002).
13. R. F. Oulton, V. J. Sorger, and D. A. Genov, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics, 2(8), 496-500 (2008).
14. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons : Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Physical Review Letters, 91(18), 183901 (2003).
15. Daoxin Dai and Sailing He, "A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement," Optics Express, 17(19), 16646-16653 (2009).
16. Yi Cui, Qingqiao Wei, Hongkun Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science, 293(5533), 1289-1292 (2001).
17. B. Liedberg, C. Nylander, and I. Lunstrom, "Surface plasmon resonance for gas detection and biosensing," Sensors and Actuators, 4(2), 299-304 (1983).
18. J. Homola, "Surface plasmon resonance sensors for detection of chemical and biological species," Chemical Reviews, 108(2), 462-493 (2008).
19. Shanhui Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop filters in photonic crystals," Optics Express, 3(1), 4-11 (1998).
20. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and Steven Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Optics Letters, 11(5), 288-290 (1986).
21. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, "Surface plasmon radiation forces," Physical Review Letters, 96(23), 238101 (2006).
22. K. T. Gahagan, R. A. Swartzlander, "Optical vortex trapping of particles," Optics Letters, 21(11), 827-829 (1996).
23. M. L. Juan, M. Righini, and R. Quidant, "Plasmon nano-optical tweezers," Nature Photonics, 5(6), 349-356 (2011).
24. P. Mühlschlegel, et al., "Resonant optical antennas," Science, 308(5728), 1607-1609 (2005).
25. P. Bharadwaj, B. Deutsch, and L. Novotny, "Optical antennas," Advanced in Optics and Photonics, 1(3), 438-483 (2009).
26. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nature Photonics, 2(4), 234-237 (2008).
27. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," Journal of Applied Physics, 94(7), 4632-4642 (2003).
28. Seungchul Kim, Jonghan Jin, Young-Jin Kim, In-Yong Park, Yunseok Kim, and Seung-Woo Kim, "High-harmonic generation by resonant plasmon field enhancement," Nature, 453(7196), 757-760 (2008).
29. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, "Near-field second-harmonic generation induced by local field enhancement," Physical Review Letters, 90(1), 013903 (2003).
30. M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, "Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures," Physical Review A, 56(4), 3166-3174 (1997).
31. Yu Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, "Three-dimensional nanostructures as highly efficient generators of second harmonic light," Nano Letters, 11(12), 5519-5523 (2011).
32. S. Viarbitskaya, O. Demichel, B. Cluzel, G. C. des Francs, and A. Bouhelier, "Delocalization of nonlinear optical responses in plasmonic nanoantennas," arXiv: 1503.07465 (2015).
33. M. Lippitz, M. A. van Dijk, and M. Orrit, "Third-harmonic generation from single gold nanoparticles," Nano Letters, 5(4), 799-802 (2005).
34. T. V. Konstantinova, et al., "A nanohole in a thin metal film as an efficient nonlinear optical element," Journal of Experimental an Theoretical Physics, 117(1), 21-31 (2013).
35. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Physical Review Letters, 95(26), 267405 (2005).
36. Fei Qin, Ye Liu, Zi-Ming Meng, and Zhi-Yuan Li, "Design of Kerr effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching," Journal of Applied Physics, 108(5), 053108 (2010).
37. A. Taflove, "Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems," IEEE Transactions on, 22(3), 191-202 (1980).
38. R. W. Boyd, "Chapter 1 – The nonlinear optical susceptibility, in nonlinear optics," Third Edition, R. W. Boyd, Editor, Academic Press, Burlington, 1-67 (2008).
39. Yun-Ting Hung, Chen-Bin Huang, and Jer-Shing Huang, "Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction," Optics Express, 20(18), 20342-20355 (2012).
40. Wen-Hua Dai, Fan-Cheng Lin, Chen-Bin Huang, and Jer-Shing Huang, "Mode conversion in high-definition plasmonic optical nanocircuits," Nano Letters, 14(7), 3881-3886 (2014).
41. S. Viarbitskaya, O. Demichel, B. Cluzel, G’erard Colas des Francs, and A. Bouhelier, "Delocalization of nonlinear optical responses in plasmonic nanoantennas," Physical Review Letters, 115(19), 197401 (2015).