研究生: |
謝惟光 Hsieh, Wei-Kuang |
---|---|
論文名稱: |
強化翻轉位元演算法的臨界集合於極性碼的信心傳遞解碼器 Enhancement of the Critical Set on Bit-Flipping Algorithm for Polar Decoders with Belief Propagation |
指導教授: |
呂忠津
Lu, Chung-Chin |
口試委員: |
林茂昭
Lin, Mao-Chao 蘇育德 Su, Yu-Te 蘇賜麟 Su, Szu-Lin |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 55 |
中文關鍵詞: | 錯誤更正碼 、極性碼 、信心傳遞解碼器 、翻轉位元演算法 、臨界集合 |
外文關鍵詞: | Error-correcting codes, Polar codes, Belief propagation, Bit-flipping algorithm, Critical sets |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一種強化極性碼(polar codes)中的翻轉位元演算法(bit-flipping algorithm)所需要的臨界集合(critical set)。在文獻中,其中一種建立方式藉由極 化碼的通道極化(channel polariztion)的性質估計出極化位元通道的錯誤率,進 行翻轉位元演算法時,由錯誤率最高到最低的位元依序做位元翻轉。在本論文 加入信心傳遞(belief propagation)解碼的結果做向後追蹤(trace back),在第一次 的信心傳遞解碼後,在每一層的檢查節點(check node)有不滿足的情況下,向 後回推相連的變數節點(variable node),並記錄變數節點的位置,一層層地回推 變數節點的位置找出可能地錯誤的位元位置,利用兩種方式所產生的臨界集合 合併考慮建立更為精準的臨界集合做翻轉位元演算法。並從模擬結果發現,此 方法可以有效地降低解碼器的錯誤率以及減少翻轉位元演算法所花費的翻轉次 數以及解碼時間。
In this thesis, we propose a new strategy to construct a critical set needed to enhance the bit-flipping algorithm in the decoding of polar codes. In the literature, one of the methods to establish a critical set is to estimate a priori error rates of polarized bit channels by using the channel polarization property of polar codes. However, we combine this error rates of estimation of polarized bit channels and the trace back method in the literation after the first belief propagation decoding, where, if the check node in one layer is not satisfied, the check node traces back to the connected variable nodes, and then records the position of the variable nodes layer by layer to find out the possible wrong bit positions. By using our proposed method, the merged critical set is more accurate to target error prone bits to be flipped in the bit-flipping algorithm. From the simulation results, it can be seen that our proposed method can effectively reduce the block error rate as well as the number of attempts and decoding time in the bit-flipping algorithm.
[1] E. Arikan, “Channel polarization: a method for constructing capacityachieving codes for symmetric binary-input memoryless channels”, IEEE Transactions on information Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.
[2] Z. Zhang, K. Qin, L. Zhang, H. Zhang, and G. T. Chen, “Progressive bit-flipping decoding of polar codes over layered critical sets,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), pp. 1-6, Dec. 2017.
[3] Y. Yu, Z. Pan, N. Liu, and X. You, “Belief propagation bit-flip decoder for polar codes,” IEEE Access, vol. 7, pp. 10937–10946, Feb. 2019.
[4] Y. Shen, W. Song, Y. Ren, H. Ji, X. You, and C. Zhang, “Enhanced belief prop- agation decoder for 5G polar codes with bit-flipping,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 5, pp. 901–905, May 2020.
[5] Y. Shen, W. Song, Y. Ren, H. Ji, C. Ji, X. You, and C. Zhang, “Improved Belief Propagation Polar Decoders With Bit-Flipping Algorithms,” IEEE Trans. Com- mun., vol. 68, no. 11, Nov. 2020.
[6] H. V. Henderson, and S. R. Searle, “The vec-permutation matrix, the vec operator and Kronecker products: A review”, Linear and Multilinear Algebra, vol. 9, issue 4, Jan. 1981.
[7] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum- product algorithm,” IEEE Trans. Inform. Theory, vol. 47, pp. 498-519, Feb. 2001.
[8] S.Y. Chung, T. J. Richardson, and R. Urbanke, “Analysis of sumproduct decoding of low-density parity-check codes using a Gaussian approximation,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 657-670, Feb. 2001.
[9] P. Trifonov, “ Efficient design and decoding of polar codes,” IEEE Trans. Com- mun. vol. 60, no.11, pp.3221-3227, Nov. 2012.